Rasme Hereme, Carolina Galleguillos, Marco A Molina-Montenegro
{"title":"Climate change and epigenetics: Unraveling the role of methylation in response to thermal instability in the Antarctic plant Colobanthus quitensis.","authors":"Rasme Hereme, Carolina Galleguillos, Marco A Molina-Montenegro","doi":"10.1111/ppl.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases. Here, we evaluated the impact of these events on the acclimation process, with a focus on how methylation influences the induction of cold response genes. According to the results, an increase in the number of methylations in the promoter regions is associated with lower expression of these genes. Similarly, in populations where this relationship is observed, individuals acclimated to the projected climate change condition are more vulnerable, as their average temperature is lower in the face of a cold event compared to individuals acclimated to the current antarctic condition. This research is the first report highlighting the role of methylation in response to cold and its influence on the transcriptional responses of the antarctic plant Colobanthus quitensis facing climate change projections.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70043"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70043","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases. Here, we evaluated the impact of these events on the acclimation process, with a focus on how methylation influences the induction of cold response genes. According to the results, an increase in the number of methylations in the promoter regions is associated with lower expression of these genes. Similarly, in populations where this relationship is observed, individuals acclimated to the projected climate change condition are more vulnerable, as their average temperature is lower in the face of a cold event compared to individuals acclimated to the current antarctic condition. This research is the first report highlighting the role of methylation in response to cold and its influence on the transcriptional responses of the antarctic plant Colobanthus quitensis facing climate change projections.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.