Caroline B Pena, Pádraig MacCarron, David J P O'Sullivan
{"title":"Finding polarized communities and tracking information diffusion on Twitter: a network approach on the Irish Abortion Referendum.","authors":"Caroline B Pena, Pádraig MacCarron, David J P O'Sullivan","doi":"10.1098/rsos.240454","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of social networks enables the understanding of social interactions, polarization of ideas and the spread of information, and therefore plays an important role in society. We use Twitter data-as it is a popular venue for the expression of opinion and dissemination of information-to identify opposing sides of a debate and, importantly, to observe how information spreads between these groups in our current polarized climate. To achieve this, we collected over 688 000 tweets from the Irish Abortion Referendum of 2018 to build a conversation network from users' mentions with sentiment-based homophily. From this network, community detection methods allow us to isolate yes- or no-aligned supporters with high accuracy (90.9%). We supplement this by tracking how information cascades spread via over 31 000 retweet cascades. We found that very little information spread between polarized communities. This provides a valuable methodology for extracting and studying information diffusion on large networks by isolating ideologically polarized groups and exploring the propagation of information within and between these groups.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 1","pages":"240454"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240454","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of social networks enables the understanding of social interactions, polarization of ideas and the spread of information, and therefore plays an important role in society. We use Twitter data-as it is a popular venue for the expression of opinion and dissemination of information-to identify opposing sides of a debate and, importantly, to observe how information spreads between these groups in our current polarized climate. To achieve this, we collected over 688 000 tweets from the Irish Abortion Referendum of 2018 to build a conversation network from users' mentions with sentiment-based homophily. From this network, community detection methods allow us to isolate yes- or no-aligned supporters with high accuracy (90.9%). We supplement this by tracking how information cascades spread via over 31 000 retweet cascades. We found that very little information spread between polarized communities. This provides a valuable methodology for extracting and studying information diffusion on large networks by isolating ideologically polarized groups and exploring the propagation of information within and between these groups.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.