Anh Van Nguyen, Anh Thi Ngoc Vu, Andrey N Utenyshev, Valeriy Tkachev, Nadezhda Polyanskaya, Dmitriy Shchevnikov, Magrarita Vasil'eva, Hieu Tran-Trung, Xuan Ha Nguyen, Olga V Kovalchukova
{"title":"Crystallographic and computational characterization and <i>in silico</i> target fishing of six aromatic and aliphatic sulfonamide derivatives.","authors":"Anh Van Nguyen, Anh Thi Ngoc Vu, Andrey N Utenyshev, Valeriy Tkachev, Nadezhda Polyanskaya, Dmitriy Shchevnikov, Magrarita Vasil'eva, Hieu Tran-Trung, Xuan Ha Nguyen, Olga V Kovalchukova","doi":"10.1098/rsos.241402","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular and crystal structures of six compounds containing sulfonamide moieties are described. It has been shown that the geometric parameters of the sulfonamide group depend little on the nature of the substituents. Their bond lengths and bond angles remain almost the same and are in good accordance with those known from the literature. In crystals, depending on the type of substituents the molecules exist in the form of either monomers or dimers joined by intermolecular hydrogen bonds involving sulfonamide fragments. Introduction of large substituents into the molecules changes the way of packing of the studied sulfonamides and decreases the number of intermolecular hydrogen bonds in the crystals. The value of this dihedral angle may affect the nature and strength of the intermolecular bonding of the species in crystals. <i>In silico</i> analyses predicted low toxicity and potential enzyme inhibition, along with antiprotozoal properties, suggesting these compounds as candidates against protozoan pathogens. Molecular docking confirmed inhibitory potential against trypanothione reductase, supporting antiprotozoal activity. Consequently, these compounds may serve as promising lead-like molecules for drug development targeting protozoan infections.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 2","pages":"241402"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241402","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular and crystal structures of six compounds containing sulfonamide moieties are described. It has been shown that the geometric parameters of the sulfonamide group depend little on the nature of the substituents. Their bond lengths and bond angles remain almost the same and are in good accordance with those known from the literature. In crystals, depending on the type of substituents the molecules exist in the form of either monomers or dimers joined by intermolecular hydrogen bonds involving sulfonamide fragments. Introduction of large substituents into the molecules changes the way of packing of the studied sulfonamides and decreases the number of intermolecular hydrogen bonds in the crystals. The value of this dihedral angle may affect the nature and strength of the intermolecular bonding of the species in crystals. In silico analyses predicted low toxicity and potential enzyme inhibition, along with antiprotozoal properties, suggesting these compounds as candidates against protozoan pathogens. Molecular docking confirmed inhibitory potential against trypanothione reductase, supporting antiprotozoal activity. Consequently, these compounds may serve as promising lead-like molecules for drug development targeting protozoan infections.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.