Klara Mareckova, Ana Paula Mendes-Silva, Martin Jáni, Anna Pacinkova, Pavel Piler, Vanessa F Gonçalves, Yuliya S Nikolova
{"title":"Mitochondrial DNA variants and their impact on epigenetic and biological aging in young adulthood.","authors":"Klara Mareckova, Ana Paula Mendes-Silva, Martin Jáni, Anna Pacinkova, Pavel Piler, Vanessa F Gonçalves, Yuliya S Nikolova","doi":"10.1038/s41398-025-03235-4","DOIUrl":null,"url":null,"abstract":"<p><p>The pace of biological aging varies between people independently of chronological age and mitochondria dysfunction is a key hallmark of biological aging. We hypothesized that higher functional impact (FI) score of mitochondrial DNA (mtDNA) variants might contribute to premature aging and tested the relationships between a novel FI score of mtDNA variants and epigenetic and biological aging in young adulthood. A total of 81 participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort had good quality genetic data as well as blood-based markers to estimate biological aging in the late 20. A subset of these participants (n = 69) also had epigenetic data to estimate epigenetic aging in the early 20s using Horvath's epigenetic clock. The novel FI score was calculated based on 7 potentially pathogenic mtDNA variants. Greater FI score of mtDNA variants was associated with older epigenetic age in the early 20s and older biological age in the late 20s. These medium to large effects were independent of sex, current BMI, cigarette smoking, cannabis, and alcohol use. These findings suggest that elevated FI score of mtDNA variants might contribute to premature aging in young adulthood.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"16"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03235-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
The pace of biological aging varies between people independently of chronological age and mitochondria dysfunction is a key hallmark of biological aging. We hypothesized that higher functional impact (FI) score of mitochondrial DNA (mtDNA) variants might contribute to premature aging and tested the relationships between a novel FI score of mtDNA variants and epigenetic and biological aging in young adulthood. A total of 81 participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort had good quality genetic data as well as blood-based markers to estimate biological aging in the late 20. A subset of these participants (n = 69) also had epigenetic data to estimate epigenetic aging in the early 20s using Horvath's epigenetic clock. The novel FI score was calculated based on 7 potentially pathogenic mtDNA variants. Greater FI score of mtDNA variants was associated with older epigenetic age in the early 20s and older biological age in the late 20s. These medium to large effects were independent of sex, current BMI, cigarette smoking, cannabis, and alcohol use. These findings suggest that elevated FI score of mtDNA variants might contribute to premature aging in young adulthood.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.