Neuroimaging stratification reveals the striatal vulnerability to stress as a risk for schizophrenia.

IF 5.8 1区 医学 Q1 PSYCHIATRY Translational Psychiatry Pub Date : 2025-01-22 DOI:10.1038/s41398-025-03237-2
Xiaoqian Ma, Nana Feng, Lena Palaniyappan, Luolong Cao, Zixin Gu, Jujiao Kang, Liu Yuan, Lijun Ouyang, Yujue Wang, Chunwang Li, Ke Jin, Xiaogang Chen, Jianfeng Feng, Ying He, Qiang Luo
{"title":"Neuroimaging stratification reveals the striatal vulnerability to stress as a risk for schizophrenia.","authors":"Xiaoqian Ma, Nana Feng, Lena Palaniyappan, Luolong Cao, Zixin Gu, Jujiao Kang, Liu Yuan, Lijun Ouyang, Yujue Wang, Chunwang Li, Ke Jin, Xiaogang Chen, Jianfeng Feng, Ying He, Qiang Luo","doi":"10.1038/s41398-025-03237-2","DOIUrl":null,"url":null,"abstract":"<p><p>The striatum, a core brain structure relevant for schizophrenia, exhibits heterogeneous volumetric changes in this illness. Due to this heterogeneity, its role in the risk of developing schizophrenia following exposure to environmental stress remains poorly understood. Using the putamen (a subnucleus of the striatum) as an indicator for convergent genetic risk of schizophrenia, 63 unaffected first-degree relatives of patients (22.08 ± 4.80 years) with schizophrenia (UFR-SZ) were stratified into two groups. Compared with healthy controls (HC; n = 59), voxel-based and brain-wide volumetric changes and their associations with stressful life events (SLE) were tested. These stratified associations were validated using two large population-based cohorts (the ABCD study; n = 1680, 11.92 ± 0.62 years; and UK Biobank, n = 20547, 55.38 ± 7.43 years). Transcriptomic analysis of brain tissues was used to identify the biological processes associated with the brain mediation effects on the SLE-psychosis relationship. The stratified UFR-SZ subgroup with smaller right putamen had a smaller volume in the left caudate when compared to HC; this caudate volume was associated with both a higher level of SLE and more psychotic symptoms. This caudate-SLE association was replicated in two independent large-scale cohorts, when individuals were stratified by both a higher polygenic burden for schizophrenia and smaller right putamen. In UFR-SZ, the caudate cluster mediated the relationship between SLE and more psychotic symptoms. This mediation was associated with the genes enriched in both glutamatergic synapses and response to oxidative stress. The stratified association between the striatum and stress highlights the differential vulnerability to stress, contributing to the complexity of the gene-by-environment etiology of schizophrenia.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"18"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03237-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

The striatum, a core brain structure relevant for schizophrenia, exhibits heterogeneous volumetric changes in this illness. Due to this heterogeneity, its role in the risk of developing schizophrenia following exposure to environmental stress remains poorly understood. Using the putamen (a subnucleus of the striatum) as an indicator for convergent genetic risk of schizophrenia, 63 unaffected first-degree relatives of patients (22.08 ± 4.80 years) with schizophrenia (UFR-SZ) were stratified into two groups. Compared with healthy controls (HC; n = 59), voxel-based and brain-wide volumetric changes and their associations with stressful life events (SLE) were tested. These stratified associations were validated using two large population-based cohorts (the ABCD study; n = 1680, 11.92 ± 0.62 years; and UK Biobank, n = 20547, 55.38 ± 7.43 years). Transcriptomic analysis of brain tissues was used to identify the biological processes associated with the brain mediation effects on the SLE-psychosis relationship. The stratified UFR-SZ subgroup with smaller right putamen had a smaller volume in the left caudate when compared to HC; this caudate volume was associated with both a higher level of SLE and more psychotic symptoms. This caudate-SLE association was replicated in two independent large-scale cohorts, when individuals were stratified by both a higher polygenic burden for schizophrenia and smaller right putamen. In UFR-SZ, the caudate cluster mediated the relationship between SLE and more psychotic symptoms. This mediation was associated with the genes enriched in both glutamatergic synapses and response to oxidative stress. The stratified association between the striatum and stress highlights the differential vulnerability to stress, contributing to the complexity of the gene-by-environment etiology of schizophrenia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
期刊最新文献
Mitochondrial DNA variants and their impact on epigenetic and biological aging in young adulthood. Neuroimaging stratification reveals the striatal vulnerability to stress as a risk for schizophrenia. Causal associations between iron levels in subcortical brain regions and psychiatric disorders: a Mendelian randomization study. The left amygdala is genetically sexually-dimorphic: multi-omics analysis of structural MRI volumes. Developing multifactorial dementia prediction models using clinical variables from cohorts in the US and Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1