Helium isotopes in geothermal fluids reveal off-rift plume degassing and localized seismicity-induced processes in North Iceland

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2025-03-07 DOI:10.1016/j.gca.2025.03.004
Carolina Dantas Cardoso , Raphaël Pik , Antonio Caracausi , Sæmundur Ari Halldórsson , Andri Stefánsson , Laurent Zimmermann , Guillaume Paris , Andrea Ricci , Hreinn Hjartarson
{"title":"Helium isotopes in geothermal fluids reveal off-rift plume degassing and localized seismicity-induced processes in North Iceland","authors":"Carolina Dantas Cardoso ,&nbsp;Raphaël Pik ,&nbsp;Antonio Caracausi ,&nbsp;Sæmundur Ari Halldórsson ,&nbsp;Andri Stefánsson ,&nbsp;Laurent Zimmermann ,&nbsp;Guillaume Paris ,&nbsp;Andrea Ricci ,&nbsp;Hreinn Hjartarson","doi":"10.1016/j.gca.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Iceland is a location of geological interest due to the combination of upwelling mantle plume and divergent plate boundary, which resulted in the formation of its extensive surface area (&gt;100,000 km<sup>2</sup>) that rises above sea-level. This unique setting facilitates assessing the role of the underlying mantle plume and tectonic activity on crust-forming processes. Helium isotopes provide a useful tool in this regard, as they can identify physical processes and resolve deep and shallow fluid sources in the crust. In Iceland, the highest <sup>3</sup>He/<sup>4</sup>He for geothermal fluids are found in Vestfirðir with values up to 29 R<sub>a</sub> (where R<sub>a</sub> is the <sup>3</sup>He/<sup>4</sup>He of air), more than 110 km away from current active rift zones. Such locations are key to understand the extent of mantle degassing processes associated with the high buoyant Icelandic mantle plume. Other off-rift regions, such as most of North Iceland, have not been extensively investigated, despite the widespread presence of geothermal activity. Although North Iceland has been volcanically inactive for the past 0.8 Ma, severe earthquake hazards associated with mature and partially on-land transform zones have occurred, rendering the monitoring of the full tectonic-hydrogeochemical system of societal importance. Our study in North Iceland aimed to (i) assess temporal variations in helium isotopic signatures in low-T geothermal water and their relationship with regional earthquakes, (ii) diminish the helium isotope data gap in geothermal fluids of this region, and (iii) elucidate both local and regional processes controlling the He isotope systematics in this region as a case study for other off-rift contexts on Earth. In order to achieve these goals, we report helium isotope time series data collected from June 2020 to October 2022 from a borehole in Hafralækur, Aðaldalur valley (95 samples collected on a near-weekly basis), along with an isotope survey (δ<sup>2</sup>H-<sup>3</sup>He/<sup>4</sup>He-δ<sup>13</sup>C<sub>TDIC</sub>-δ<sup>18</sup>O-δ<sup>34</sup>S<sub>SO4</sub>) of North Iceland geothermal fluids (T &lt; 130 °C, n = 36 samples). The results indicate a large regional variability in helium isotope ratios (4 to 27 R<sub>a</sub>) that is comparable to the entire range evident in geothermal fluids across Iceland (∼1 to 29 R<sub>a</sub>) where the maximum <sup>3</sup>He/<sup>4</sup>He signature is among the highest measured in geothermal fluids from oceanic and continental hotspots globally. Several processes, both on regional and local scales, are needed to account for this large range: (i) influence of a deeply-derived mantle flux evidenced by a high <sup>3</sup>He/<sup>4</sup>He mantle component, degassing via fault systems, (ii) release of local radiogenic helium components, potentially associated with seismic events along the Dalvík Lineament, and (iii) local groundwater mixing, for example evident at the Hafralækur site and documented by periodic M &gt; 5 seismic events. The estimated magmatic helium flux for the entire study region is comparable to that of the mid-ocean ridge, where mantle-derived melts intruded in the crust are actively degassing, confirming the large-scale degassing of the Iceland plume. As basalts and their source materials can be affected by radiogenic additions and temporal variations, we postulate that geothermal fluids may better reflect the maximum present-day <sup>3</sup>He/<sup>4</sup>He plume signature.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"395 ","pages":"Pages 12-31"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670372500119X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Iceland is a location of geological interest due to the combination of upwelling mantle plume and divergent plate boundary, which resulted in the formation of its extensive surface area (>100,000 km2) that rises above sea-level. This unique setting facilitates assessing the role of the underlying mantle plume and tectonic activity on crust-forming processes. Helium isotopes provide a useful tool in this regard, as they can identify physical processes and resolve deep and shallow fluid sources in the crust. In Iceland, the highest 3He/4He for geothermal fluids are found in Vestfirðir with values up to 29 Ra (where Ra is the 3He/4He of air), more than 110 km away from current active rift zones. Such locations are key to understand the extent of mantle degassing processes associated with the high buoyant Icelandic mantle plume. Other off-rift regions, such as most of North Iceland, have not been extensively investigated, despite the widespread presence of geothermal activity. Although North Iceland has been volcanically inactive for the past 0.8 Ma, severe earthquake hazards associated with mature and partially on-land transform zones have occurred, rendering the monitoring of the full tectonic-hydrogeochemical system of societal importance. Our study in North Iceland aimed to (i) assess temporal variations in helium isotopic signatures in low-T geothermal water and their relationship with regional earthquakes, (ii) diminish the helium isotope data gap in geothermal fluids of this region, and (iii) elucidate both local and regional processes controlling the He isotope systematics in this region as a case study for other off-rift contexts on Earth. In order to achieve these goals, we report helium isotope time series data collected from June 2020 to October 2022 from a borehole in Hafralækur, Aðaldalur valley (95 samples collected on a near-weekly basis), along with an isotope survey (δ2H-3He/4He-δ13CTDIC18O-δ34SSO4) of North Iceland geothermal fluids (T < 130 °C, n = 36 samples). The results indicate a large regional variability in helium isotope ratios (4 to 27 Ra) that is comparable to the entire range evident in geothermal fluids across Iceland (∼1 to 29 Ra) where the maximum 3He/4He signature is among the highest measured in geothermal fluids from oceanic and continental hotspots globally. Several processes, both on regional and local scales, are needed to account for this large range: (i) influence of a deeply-derived mantle flux evidenced by a high 3He/4He mantle component, degassing via fault systems, (ii) release of local radiogenic helium components, potentially associated with seismic events along the Dalvík Lineament, and (iii) local groundwater mixing, for example evident at the Hafralækur site and documented by periodic M > 5 seismic events. The estimated magmatic helium flux for the entire study region is comparable to that of the mid-ocean ridge, where mantle-derived melts intruded in the crust are actively degassing, confirming the large-scale degassing of the Iceland plume. As basalts and their source materials can be affected by radiogenic additions and temporal variations, we postulate that geothermal fluids may better reflect the maximum present-day 3He/4He plume signature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Mechanism of mineral adsorption enhancing the reduction of hexavalent chromium by natural organic matter Exogenous iron mitigates photo-facilitation of soil organic matter Helium isotopes in geothermal fluids reveal off-rift plume degassing and localized seismicity-induced processes in North Iceland Extending the utility of the Tl isotope paleoredox proxy to carbonates Microbial-mediated bastnaesite dissolution as a viable source of clay-adsorbed rare earth elements in the regolith-hosted deposits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1