Yongli Wen , Jiali Wu , Xueting Wen , Zhuoyue Zhang , Jian Wang , Guanghui Yu , Xinhua He , Maohong Xu , Man Cheng , Wenjuan Liu , Jian Xiao
{"title":"Exogenous iron mitigates photo-facilitation of soil organic matter","authors":"Yongli Wen , Jiali Wu , Xueting Wen , Zhuoyue Zhang , Jian Wang , Guanghui Yu , Xinhua He , Maohong Xu , Man Cheng , Wenjuan Liu , Jian Xiao","doi":"10.1016/j.gca.2025.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>Subalpine meadow soil carbon (C) is susceptible to ultraviolet B (UV-B) radiation, yet the mechanisms of UVB-induced soil organic C (SOC) photodegradation and the influence of iron (Fe) on this susceptibility remain largely unknown. In this study, soils from the southeastern (SE) and northwestern (NW) slopes of a subalpine meadow were exposed to three UVB treatments, elevated (ele-UVB, ∼120 μW·cm<sup>−2</sup>), ambient (amb-UVB, ∼60 μW·cm<sup>−2</sup>), or attenuated (no-UVB, 0 μW·cm<sup>−2</sup>), to assess the effects of UV radiation and Fe addition on SOC mineralization. A two-phase lignin incubation experiment was then conducted to elucidate the mechanism by which Fe influences the abiotic and biotic processes of lignin photodegradation. Results showed that ele-UVB increased SOC degradation by 137 % and 34 % in the SE and NW soils, respectively. Lignin phenols underwent significant photochemical degradation, which was mitigated by Fe addition. Furthermore, our findings revealed that photo-facilitation (i.e., microbial decomposition) significantly contributed to lignin photodegradation, releasing over 5 times more CO<sub>2</sub> than abiotic degradation did. This occurred mainly due to the depolymerization of lignin macromolecules, which increased the substrate availability for microbes, rather than shifts in microbial community composition. Fe impacted photo-facilitation by binding with lignin derivatives, reducing microbial accessibility and limiting their decomposition. These findings highlight the intricate interactions among UV-B radiation, Fe, and microbial processes in SOC turnover, offering critical insights for soil C management under global environmental change scenarios.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"395 ","pages":"Pages 1-11"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725001267","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Subalpine meadow soil carbon (C) is susceptible to ultraviolet B (UV-B) radiation, yet the mechanisms of UVB-induced soil organic C (SOC) photodegradation and the influence of iron (Fe) on this susceptibility remain largely unknown. In this study, soils from the southeastern (SE) and northwestern (NW) slopes of a subalpine meadow were exposed to three UVB treatments, elevated (ele-UVB, ∼120 μW·cm−2), ambient (amb-UVB, ∼60 μW·cm−2), or attenuated (no-UVB, 0 μW·cm−2), to assess the effects of UV radiation and Fe addition on SOC mineralization. A two-phase lignin incubation experiment was then conducted to elucidate the mechanism by which Fe influences the abiotic and biotic processes of lignin photodegradation. Results showed that ele-UVB increased SOC degradation by 137 % and 34 % in the SE and NW soils, respectively. Lignin phenols underwent significant photochemical degradation, which was mitigated by Fe addition. Furthermore, our findings revealed that photo-facilitation (i.e., microbial decomposition) significantly contributed to lignin photodegradation, releasing over 5 times more CO2 than abiotic degradation did. This occurred mainly due to the depolymerization of lignin macromolecules, which increased the substrate availability for microbes, rather than shifts in microbial community composition. Fe impacted photo-facilitation by binding with lignin derivatives, reducing microbial accessibility and limiting their decomposition. These findings highlight the intricate interactions among UV-B radiation, Fe, and microbial processes in SOC turnover, offering critical insights for soil C management under global environmental change scenarios.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.