Gradient Design with Low-tortuosity Overcoming Kinetic Limitations in High-Loading Solid-State Cathodes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-23 DOI:10.1002/anie.202425357
Guangzeng Cheng, Jinping Yu, Yonghui Wang, Zhengyu Ju, Yue Zhu, Weiqian Tian, Jingwei Chen, Huanlei Wang, Jingyi Wu, Guihua Yu
{"title":"Gradient Design with Low-tortuosity Overcoming Kinetic Limitations in High-Loading Solid-State Cathodes","authors":"Guangzeng Cheng, Jinping Yu, Yonghui Wang, Zhengyu Ju, Yue Zhu, Weiqian Tian, Jingwei Chen, Huanlei Wang, Jingyi Wu, Guihua Yu","doi":"10.1002/anie.202425357","DOIUrl":null,"url":null,"abstract":"The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely delayed in thick cathodes due to tortuous ion transport pathways and slow solid-solid ion diffusion, which limit the achievable capacity of SSBs at high current densities. In this work, we propose a conductivity gradient cathode with low-tortuosity to enable facile ion transport and counterbalance ion concentration gradient, thereby overcoming the kinetic limitations and achieving fast charging capabilities in thick cathodes. The LiNi0.8Co0.1Mn0.1O2 cathodes deliver a room-temperature (RT) capacities of 147 and 110 mAh g-1 at 5 C and 10 C, respectively, and meanwhile achieve a RT areal capacity of 3.3 mAh cm-² at 3 C, enabling SSBs simultaneously high energy and power densities. The universality of this strategy is demonstrated in LiFePO4 cathodes, providing a novel solution for fast charging and large-scale application of high-loading SSBs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"51 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202425357","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely delayed in thick cathodes due to tortuous ion transport pathways and slow solid-solid ion diffusion, which limit the achievable capacity of SSBs at high current densities. In this work, we propose a conductivity gradient cathode with low-tortuosity to enable facile ion transport and counterbalance ion concentration gradient, thereby overcoming the kinetic limitations and achieving fast charging capabilities in thick cathodes. The LiNi0.8Co0.1Mn0.1O2 cathodes deliver a room-temperature (RT) capacities of 147 and 110 mAh g-1 at 5 C and 10 C, respectively, and meanwhile achieve a RT areal capacity of 3.3 mAh cm-² at 3 C, enabling SSBs simultaneously high energy and power densities. The universality of this strategy is demonstrated in LiFePO4 cathodes, providing a novel solution for fast charging and large-scale application of high-loading SSBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低扭曲度梯度设计克服高负载固态阴极的动力学限制
实用固态电池(SSBs)的广泛商业化要求开发具有快速充电能力的高负载固态阴极。然而,由于弯曲的离子传输路径和缓慢的固-固离子扩散,在厚阴极中电化学动力学严重延迟,这限制了ssb在高电流密度下的可实现容量。在这项工作中,我们提出了一种具有低扭曲度的电导率梯度阴极,以实现易于离子传输和平衡离子浓度梯度,从而克服动力学限制并实现厚阴极的快速充电能力。LiNi0.8Co0.1Mn0.1O2阴极在5℃和10℃时的室温(RT)容量分别为147 mAh g-1和110 mAh g-1,同时在3℃时的RT面积容量为3.3 mAh cm- 2,使ssb同时具有高能量和功率密度。该策略的通用性在LiFePO4阴极中得到了证明,为高负载固态电池的快速充电和大规模应用提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Forward‒ and Retro‒Vapofluorochromism of Sponge‒Like Macrocycle Crystals Dynamic, Single-cell Monitoring of RNA Modifications Response to Viral Infection Using a Genetically Encoded Live-cell RNA Methylation Sensor Gradient Design with Low-tortuosity Overcoming Kinetic Limitations in High-Loading Solid-State Cathodes Switching CO2 Electroreduction toward C2+ Products and CH4 by Regulate the Protonation and Dimerization in Platinum/Copper Catalysts Broad-Temperature Optical Thermometry via Dual Sensitivity of Self-Trapped Excitons Lifetime and Higher-Order Phonon Anharmonicity in Lead-Free Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1