Entropy stabilized form chirality in curved rod nematics: structure and symmetries.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2025-01-23 DOI:10.1039/d4sm01229a
Alexandros G Vanakaras, Edward T Samulski, Demetri J Photinos
{"title":"Entropy stabilized form chirality in curved rod nematics: structure and symmetries.","authors":"Alexandros G Vanakaras, Edward T Samulski, Demetri J Photinos","doi":"10.1039/d4sm01229a","DOIUrl":null,"url":null,"abstract":"<p><p>Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, <i>C</i><sub>2</sub>-symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase. Instead it is shown that, analogous to the isotropic-to-nematic transition, entropy stabilizes the roto-translating polar director in the polar-twisted nematic phase. The conflation of macroscale form chirality in ferroelectric nematics with that in the twist-bend nematic stems from the misattribution of the nanoscale modulation in the lower temperature nematic \"N<sub>X</sub> phase\" found in CB7CB dimers.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01229a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, C2-symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase. Instead it is shown that, analogous to the isotropic-to-nematic transition, entropy stabilizes the roto-translating polar director in the polar-twisted nematic phase. The conflation of macroscale form chirality in ferroelectric nematics with that in the twist-bend nematic stems from the misattribution of the nanoscale modulation in the lower temperature nematic "NX phase" found in CB7CB dimers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
期刊最新文献
Instabilities, thermal fluctuations, defects and dislocations in the crystal-RI-RII rotator phase transitions of n-alkanes. A multi-body finite element model for hydrogel packings: linear response to shear. Characterizing dynamic heterogeneities during nanogel degradation. Entropy stabilized form chirality in curved rod nematics: structure and symmetries. Topological defects induced by air inclusions in ferroelectric nematic liquid crystals with ionic doping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1