Alexandros G Vanakaras, Edward T Samulski, Demetri J Photinos
{"title":"Entropy stabilized form chirality in curved rod nematics: structure and symmetries.","authors":"Alexandros G Vanakaras, Edward T Samulski, Demetri J Photinos","doi":"10.1039/d4sm01229a","DOIUrl":null,"url":null,"abstract":"<p><p>Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, <i>C</i><sub>2</sub>-symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase. Instead it is shown that, analogous to the isotropic-to-nematic transition, entropy stabilizes the roto-translating polar director in the polar-twisted nematic phase. The conflation of macroscale form chirality in ferroelectric nematics with that in the twist-bend nematic stems from the misattribution of the nanoscale modulation in the lower temperature nematic \"N<sub>X</sub> phase\" found in CB7CB dimers.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01229a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, C2-symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase. Instead it is shown that, analogous to the isotropic-to-nematic transition, entropy stabilizes the roto-translating polar director in the polar-twisted nematic phase. The conflation of macroscale form chirality in ferroelectric nematics with that in the twist-bend nematic stems from the misattribution of the nanoscale modulation in the lower temperature nematic "NX phase" found in CB7CB dimers.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.