A multi-body finite element model for hydrogel packings: linear response to shear.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2025-01-24 DOI:10.1039/d4sm00916a
Ahmed Elgailani, Craig E Maloney
{"title":"A multi-body finite element model for hydrogel packings: linear response to shear.","authors":"Ahmed Elgailani, Craig E Maloney","doi":"10.1039/d4sm00916a","DOIUrl":null,"url":null,"abstract":"<p><p>We study a multi-body finite element model of a packing of hydrogel particles using the Flory-Rehner constitutive law to model the deformation of the swollen polymer network. We show that while the dependence of the pressure, <i>Π</i>, on the effective volume fraction, <i>ϕ</i>, is virtually identical to a monolithic Flory material, the shear modulus, <i>μ</i>, behaves in a non-trivial way. <i>μ</i> increases monotonically with <i>Π</i> from zero and remains below about 80% of the monolithic Flory value at the largest <i>Π</i> we study here. The local shear strain in the particles has a large spatial variation. Local strains near the centers of the particles are all roughly equal to the applied shear strain, but the local strains near the contact facets are much smaller and depend on the orientation of the facet. We show that the slip between particles at the facets depends strongly on the orientation of the facet and is, on average, proportional to the component of the applied shear strain resolved onto the facet orientation. This slip screens the stress transmission and results in a reduction of the shear modulus relative to what one would obtain if the particles were welded together at the facet. Surprisingly, given the reduction in the shear modulus arising from the facet slip, and the spatial variations in the local shear strain inside the particles themselves, the deformation of the particle centroids is rather homogeneous with the strains of the Delaunay triangles having fluctuations of only order ±5%. These results should open the way to construction of quantitative estimates of the shear modulus in highly compressed packings <i>via</i> mean-field, effective-medium type approaches.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm00916a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study a multi-body finite element model of a packing of hydrogel particles using the Flory-Rehner constitutive law to model the deformation of the swollen polymer network. We show that while the dependence of the pressure, Π, on the effective volume fraction, ϕ, is virtually identical to a monolithic Flory material, the shear modulus, μ, behaves in a non-trivial way. μ increases monotonically with Π from zero and remains below about 80% of the monolithic Flory value at the largest Π we study here. The local shear strain in the particles has a large spatial variation. Local strains near the centers of the particles are all roughly equal to the applied shear strain, but the local strains near the contact facets are much smaller and depend on the orientation of the facet. We show that the slip between particles at the facets depends strongly on the orientation of the facet and is, on average, proportional to the component of the applied shear strain resolved onto the facet orientation. This slip screens the stress transmission and results in a reduction of the shear modulus relative to what one would obtain if the particles were welded together at the facet. Surprisingly, given the reduction in the shear modulus arising from the facet slip, and the spatial variations in the local shear strain inside the particles themselves, the deformation of the particle centroids is rather homogeneous with the strains of the Delaunay triangles having fluctuations of only order ±5%. These results should open the way to construction of quantitative estimates of the shear modulus in highly compressed packings via mean-field, effective-medium type approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
期刊最新文献
Instabilities, thermal fluctuations, defects and dislocations in the crystal-RI-RII rotator phase transitions of n-alkanes. A multi-body finite element model for hydrogel packings: linear response to shear. Characterizing dynamic heterogeneities during nanogel degradation. Entropy stabilized form chirality in curved rod nematics: structure and symmetries. Topological defects induced by air inclusions in ferroelectric nematic liquid crystals with ionic doping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1