Yi Cheng, Yuhui Du, Yue Hu, Xinying Wang, Qingyuan Li, Xi Yan, Ming Dou, Weihua Jia, Fangfang Yu, Yue Ba, Guoyu Zhou
{"title":"The Role of GSK3β Signaling Mediated Lysosomal Biosynthesis Dysregulation in Fluoride-Induced Neurological Impairment.","authors":"Yi Cheng, Yuhui Du, Yue Hu, Xinying Wang, Qingyuan Li, Xi Yan, Ming Dou, Weihua Jia, Fangfang Yu, Yue Ba, Guoyu Zhou","doi":"10.1016/j.fct.2025.115267","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological dysfunction induced by fluoride is still one of major concern worldwide, yet the underlying mechanisms remain elusive. To explore whether fluoride disrupts lysosomal biosynthesis via the GSK3β signaling, leading to neurological damage, both in vivo rat models and in vitro PC12 cell models were conducted. Subsequent findings revealed reduced spatial learning and memory abilities, decreased hippocampal neurons, and disrupted neuronal arrangement in NaF-treated rats. In vitro, PC12 cells exhibited decreased cell viability and increased apoptosis rates after NaF treatment for 24 h. Moreover, immunofluorescence assays demonstrated that there is a reduction in the number of mature lysosomes and an increase in immature lysosomes in NaF-treated PC12 cells, evident by decreased co-localization of LAMP1 with Arl8b, and increased co-localization of LAMP1 with Rab7. Furthermore, both in vivo and in vitro, the protein expression of cleaved caspase-3 was upregulated, whereas the protein expressions of TFEB and CTSB were downregulated. The GSK3β signaling activation was detected, and this was confirmed by silencing GSK3β with siRNA in vitro. Collectively, these results indicate that NaF can impair lysosomal biosynthesis via GSK3β signaling, promoting neuronal apoptosis, and consequently impairing neurological function in rats.</p>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":" ","pages":"115267"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fct.2025.115267","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurological dysfunction induced by fluoride is still one of major concern worldwide, yet the underlying mechanisms remain elusive. To explore whether fluoride disrupts lysosomal biosynthesis via the GSK3β signaling, leading to neurological damage, both in vivo rat models and in vitro PC12 cell models were conducted. Subsequent findings revealed reduced spatial learning and memory abilities, decreased hippocampal neurons, and disrupted neuronal arrangement in NaF-treated rats. In vitro, PC12 cells exhibited decreased cell viability and increased apoptosis rates after NaF treatment for 24 h. Moreover, immunofluorescence assays demonstrated that there is a reduction in the number of mature lysosomes and an increase in immature lysosomes in NaF-treated PC12 cells, evident by decreased co-localization of LAMP1 with Arl8b, and increased co-localization of LAMP1 with Rab7. Furthermore, both in vivo and in vitro, the protein expression of cleaved caspase-3 was upregulated, whereas the protein expressions of TFEB and CTSB were downregulated. The GSK3β signaling activation was detected, and this was confirmed by silencing GSK3β with siRNA in vitro. Collectively, these results indicate that NaF can impair lysosomal biosynthesis via GSK3β signaling, promoting neuronal apoptosis, and consequently impairing neurological function in rats.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.