Sulfonic acid functionalized β-amyloid peptide aggregation inhibitors and antioxidant agents for the treatment of Alzheimer's disease: Combining machine learning, computational, in vitro and in vivo approaches.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2025-04-01 Epub Date: 2025-01-20 DOI:10.1016/j.ijbiomac.2025.140142
Vinit Raj, Chaitany Jayprakash Raorane, Divya Shastri, Jae Hyun Kim, Sangkil Lee
{"title":"Sulfonic acid functionalized β-amyloid peptide aggregation inhibitors and antioxidant agents for the treatment of Alzheimer's disease: Combining machine learning, computational, in vitro and in vivo approaches.","authors":"Vinit Raj, Chaitany Jayprakash Raorane, Divya Shastri, Jae Hyun Kim, Sangkil Lee","doi":"10.1016/j.ijbiomac.2025.140142","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is characterized as a neurodegenerative disorder that is caused by plaque formation by accumulating β-amyloid (Aβ), leading to neurocognitive function and impaired mental development. Thus, targeting Aβ represents a promising target for the development of therapeutics in AD management. Several functionalized sulfonic acid molecules have been reported, including tramiprosate prodrug, which is currently in clinical trial III and exhibits a good response in mild to moderate AD patients. Therefore, expanding upon this approach, we hypothesized that the sulfonic acid functionalized aromatic class molecule might demonstrate a good inhibitory effect against β-amyloid aggregation, leading to a decrease in the progression burden of AD. We used computational and in vitro approaches to establish effective compounds. As a result, three potent hit molecules were selected based on binding score as well as availability. In the case of safety profile of compounds, in vitro using human neuroblastoma SH-SY5Y cells and in vivo using C. elegans was performed at doses up to 500 μM; no difference in viability was exhibited between control and treatment groups. However, H<sub>2</sub>O<sub>2</sub>-induced ROS stress was significantly reduced in neuroblastoma cells after treatment. The AFM and ThT-embedded β-amyloid<sub>1-42</sub> kinetic studies confirmed B-PEA-MBSA and H-HPA-NSA potency. H-HPA-NSA arrested elongation phase of Aβ aggregation in kinetic study at a lower concentration (10 μM), while B-PEA-MBSA reduced the intensity of stationary phase at a dose of 100 μM. Thus, based on the outcomes, it can be suggested that B-PEA-MBSA and H-HPA-NSA can prevent β-amyloid aggregation with mild to moderate AD.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140142"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140142","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is characterized as a neurodegenerative disorder that is caused by plaque formation by accumulating β-amyloid (Aβ), leading to neurocognitive function and impaired mental development. Thus, targeting Aβ represents a promising target for the development of therapeutics in AD management. Several functionalized sulfonic acid molecules have been reported, including tramiprosate prodrug, which is currently in clinical trial III and exhibits a good response in mild to moderate AD patients. Therefore, expanding upon this approach, we hypothesized that the sulfonic acid functionalized aromatic class molecule might demonstrate a good inhibitory effect against β-amyloid aggregation, leading to a decrease in the progression burden of AD. We used computational and in vitro approaches to establish effective compounds. As a result, three potent hit molecules were selected based on binding score as well as availability. In the case of safety profile of compounds, in vitro using human neuroblastoma SH-SY5Y cells and in vivo using C. elegans was performed at doses up to 500 μM; no difference in viability was exhibited between control and treatment groups. However, H2O2-induced ROS stress was significantly reduced in neuroblastoma cells after treatment. The AFM and ThT-embedded β-amyloid1-42 kinetic studies confirmed B-PEA-MBSA and H-HPA-NSA potency. H-HPA-NSA arrested elongation phase of Aβ aggregation in kinetic study at a lower concentration (10 μM), while B-PEA-MBSA reduced the intensity of stationary phase at a dose of 100 μM. Thus, based on the outcomes, it can be suggested that B-PEA-MBSA and H-HPA-NSA can prevent β-amyloid aggregation with mild to moderate AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Biocatalytic enzymes in food packaging, biomedical, and biotechnological applications: A comprehensive review. Bio-fabrication of chitosan-stabilized magnesium oxide nanomaterials: Investigation of photocatalytic, in vitro cytotoxicity activities and apoptosis in oral squamous carcinoma cells. Mitochondrial oxidative stress related LncRNA predict cervical cancer prognosis and immunotherapy response: Molecular structure and protein interaction of ribosomal protein L34. Sulfonic acid functionalized β-amyloid peptide aggregation inhibitors and antioxidant agents for the treatment of Alzheimer's disease: Combining machine learning, computational, in vitro and in vivo approaches. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1