{"title":"Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes.","authors":"Coronel Eb, Ixtaina Vy, Capitani Mi","doi":"10.1007/s11130-025-01297-9","DOIUrl":null,"url":null,"abstract":"<p><p>The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes. Chia expeller, rich in protein, lipids, and fiber, with a notable fatty acid profile -particularly α-linolenic and linoleic acids- and significant levels of Ca, Mg, Fe, Zn, Cu, P, and Na, emerged as a standout ingredient. It also demonstrated remarkable water-binding functionality. Pea flours were notable for their high protein, Ca, Cl, Fe, and linoleic acid content. Meanwhile, rice and buckwheat flours were distinguished by their carbohydrate and oleic acid content. Buckwheat also provides substantial Mg and Zn, while rice flour stood out for its higher brightness. These findings underscore the potential of these flours to contribute to the development of functional foods tailored to meet specific nutritional needs and consumer preferences for healthier options. The distinct functional properties of each flour type can contribute to making targeted formulations, improving the technological properties of gluten-free products.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":"80 1","pages":"43"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-025-01297-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes. Chia expeller, rich in protein, lipids, and fiber, with a notable fatty acid profile -particularly α-linolenic and linoleic acids- and significant levels of Ca, Mg, Fe, Zn, Cu, P, and Na, emerged as a standout ingredient. It also demonstrated remarkable water-binding functionality. Pea flours were notable for their high protein, Ca, Cl, Fe, and linoleic acid content. Meanwhile, rice and buckwheat flours were distinguished by their carbohydrate and oleic acid content. Buckwheat also provides substantial Mg and Zn, while rice flour stood out for its higher brightness. These findings underscore the potential of these flours to contribute to the development of functional foods tailored to meet specific nutritional needs and consumer preferences for healthier options. The distinct functional properties of each flour type can contribute to making targeted formulations, improving the technological properties of gluten-free products.
期刊介绍:
Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by:
- Biotechnology (all fields, including molecular biology and genetic engineering)
- Food science and technology
- Functional, nutraceutical or pharma foods
- Other nutrients and non-nutrients inherent in plant foods