Eeg Microstates and Balance Parameters for Stroke Discrimination: A Machine Learning Approach.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY Brain Topography Pub Date : 2025-01-22 DOI:10.1007/s10548-024-01093-9
Eloise de Oliveira Lima, José Maurício Ramos de Souza Neto, Felipe Leonardo Seixas Castro, Letícia Maria Silva, Rebeca Andrade Laurentino, Vitória Ferreira Calado, Isolda Maria Barros Torquato, Karen Lúcia de Araújo Freitas Moreira, Suellen Marinho Andrade
{"title":"Eeg Microstates and Balance Parameters for Stroke Discrimination: A Machine Learning Approach.","authors":"Eloise de Oliveira Lima, José Maurício Ramos de Souza Neto, Felipe Leonardo Seixas Castro, Letícia Maria Silva, Rebeca Andrade Laurentino, Vitória Ferreira Calado, Isolda Maria Barros Torquato, Karen Lúcia de Araújo Freitas Moreira, Suellen Marinho Andrade","doi":"10.1007/s10548-024-01093-9","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features using a machine learning approach. Fifty-four participants (27 stroke patients and 27 healthy age and sex-matched controls) were recruited. We recorded EEG-MS using 32 channels during eyes-closed and eyes-open conditions and analyzed the four classical EEG-MS maps (A, B, C, D). Clinical information and motor aspects were evaluated. A machine learning method using k-means algorithms to discriminate stroke patients from healthy subjects showed that the most influential parameters in clustering were balance scores and microstate parameters (duration and coverage of microstate A, duration, coverage and occurrence of microstates C and global variance explained). To evaluate the quality of clustering, the Silhouette score was applied and the score was close to 0.20, indicating that the clusters overlap. These results are encouraging and support the usefulness of these methods for classifying stroke patients in order to contribute to the development of therapeutic strategies, improve the clinical management of these patients, and consequently reduce the associated costs.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"23"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01093-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features using a machine learning approach. Fifty-four participants (27 stroke patients and 27 healthy age and sex-matched controls) were recruited. We recorded EEG-MS using 32 channels during eyes-closed and eyes-open conditions and analyzed the four classical EEG-MS maps (A, B, C, D). Clinical information and motor aspects were evaluated. A machine learning method using k-means algorithms to discriminate stroke patients from healthy subjects showed that the most influential parameters in clustering were balance scores and microstate parameters (duration and coverage of microstate A, duration, coverage and occurrence of microstates C and global variance explained). To evaluate the quality of clustering, the Silhouette score was applied and the score was close to 0.20, indicating that the clusters overlap. These results are encouraging and support the usefulness of these methods for classifying stroke patients in order to contribute to the development of therapeutic strategies, improve the clinical management of these patients, and consequently reduce the associated costs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
期刊最新文献
Eeg Microstates and Balance Parameters for Stroke Discrimination: A Machine Learning Approach. Individuals' Food Preferences can be Influenced by the Music Styles: An ERP Study. Relational Integration Training Modulated the Frontoparietal Network for Fluid Intelligence: An EEG Microstates Study. Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke. Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1