{"title":"Relational Integration Training Modulated the Frontoparietal Network for Fluid Intelligence: An EEG Microstates Study.","authors":"Zhidong Wang, Tie Sun, Feng Xiao","doi":"10.1007/s10548-024-01099-3","DOIUrl":null,"url":null,"abstract":"<p><p>Relational integration is a key subcomponent of working memory and a strong predictor of fluid intelligence. Both relational integration and fluid intelligence share a common neural foundation, particularly involving the frontoparietal network. This study utilized a randomized controlled experiment to examine the effect of relational integration training on brain networks using electroencephalogram (EEG) and microstate analysis. Participants were randomly assigned to either a relational integration training group (n = 29) or an active control group (n = 28) for one month. The Sandia matrices task assessed fluid intelligence, while rest-EEG was recorded during pre- and post-tests. Microstate analysis revealed that, for microstate D, the training group demonstrated a significant increase in occurrence and contribution following the intervention compared to the control group. Additionally, microstate D occurrence was negatively correlated with reaction times (RTs). Post-training, the training group showed a lower occurrence and contribution of microstate C compared to the control group. Regarding transfer probability, the training group exhibited a decrease between microstates A and B, and an increase between microstates C and D. In contrast, the control group showed increased transfer probability between microstates A, B, and C, and a decrease between microstate D and other microstates (B and A). These findings indicate that relational integration training influences frontoparietal networks associated with fluid intelligence. The current study suggests that relational integration training is an effective intervention for enhancing fluid intelligence.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"24"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01099-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Relational integration is a key subcomponent of working memory and a strong predictor of fluid intelligence. Both relational integration and fluid intelligence share a common neural foundation, particularly involving the frontoparietal network. This study utilized a randomized controlled experiment to examine the effect of relational integration training on brain networks using electroencephalogram (EEG) and microstate analysis. Participants were randomly assigned to either a relational integration training group (n = 29) or an active control group (n = 28) for one month. The Sandia matrices task assessed fluid intelligence, while rest-EEG was recorded during pre- and post-tests. Microstate analysis revealed that, for microstate D, the training group demonstrated a significant increase in occurrence and contribution following the intervention compared to the control group. Additionally, microstate D occurrence was negatively correlated with reaction times (RTs). Post-training, the training group showed a lower occurrence and contribution of microstate C compared to the control group. Regarding transfer probability, the training group exhibited a decrease between microstates A and B, and an increase between microstates C and D. In contrast, the control group showed increased transfer probability between microstates A, B, and C, and a decrease between microstate D and other microstates (B and A). These findings indicate that relational integration training influences frontoparietal networks associated with fluid intelligence. The current study suggests that relational integration training is an effective intervention for enhancing fluid intelligence.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.