Gliclazide protects ionizing radiation-induced intestinal injury in mice by inhibiting oxidative stress and caspase-3.

Biotechnologia Pub Date : 2024-12-19 eCollection Date: 2024-01-01 DOI:10.5114/bta.2024.145257
Soroush Arzani, Soghra Farzipour, Fereshteh Talebpour Amiri, Seyed Jalal Hosseinimehr
{"title":"Gliclazide protects ionizing radiation-induced intestinal injury in mice by inhibiting oxidative stress and caspase-3.","authors":"Soroush Arzani, Soghra Farzipour, Fereshteh Talebpour Amiri, Seyed Jalal Hosseinimehr","doi":"10.5114/bta.2024.145257","DOIUrl":null,"url":null,"abstract":"<p><p>Gliclazide (GLZ), an oral antihyperglycemic medication, has additional beneficial effects, such as anti-inflammatory and antioxidant properties, besides lowering blood glucose levels. In this study, the radio-protective effect of GLZ was evaluated against ionizing radiation (IR)-induced intestinal injury in mice. Eight groups of mice were randomized as follows: control, GLZ (5, 10, and 25 mg/kg), IR (6 Gy), and IR + GLZ (at 5, 10, and 25 mg/kg). GLZ was administered to the mice for eight consecutive days, after which they were exposed to X-rays at a single dose of 6 Gy. After irradiation, biochemical parameters, immunohistochemical, and histological examinations were conducted on the ileum of the mice. IR exposure increased the levels of malondialdehyde and protein carbonyl, while glutathione levels, as oxidative stress biomarkers, decreased. Apoptosis in ileum tissues was also assessed. Furthermore, histopathological changes were observed in the irradiated mice. GLZ treatment significantly mitigated these changes. The administration of GLZ resulted in a marked decrease in caspase-3 immunoreactivity in the ileum of irradiated mice. This preclinical study exhibited that GLZ has a radioprotective effect against intestinal injury by inhibiting oxidative stress and apoptosis.</p>","PeriodicalId":94371,"journal":{"name":"Biotechnologia","volume":"105 4","pages":"367-376"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/bta.2024.145257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gliclazide (GLZ), an oral antihyperglycemic medication, has additional beneficial effects, such as anti-inflammatory and antioxidant properties, besides lowering blood glucose levels. In this study, the radio-protective effect of GLZ was evaluated against ionizing radiation (IR)-induced intestinal injury in mice. Eight groups of mice were randomized as follows: control, GLZ (5, 10, and 25 mg/kg), IR (6 Gy), and IR + GLZ (at 5, 10, and 25 mg/kg). GLZ was administered to the mice for eight consecutive days, after which they were exposed to X-rays at a single dose of 6 Gy. After irradiation, biochemical parameters, immunohistochemical, and histological examinations were conducted on the ileum of the mice. IR exposure increased the levels of malondialdehyde and protein carbonyl, while glutathione levels, as oxidative stress biomarkers, decreased. Apoptosis in ileum tissues was also assessed. Furthermore, histopathological changes were observed in the irradiated mice. GLZ treatment significantly mitigated these changes. The administration of GLZ resulted in a marked decrease in caspase-3 immunoreactivity in the ileum of irradiated mice. This preclinical study exhibited that GLZ has a radioprotective effect against intestinal injury by inhibiting oxidative stress and apoptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In silico evaluation, characterization, and in vitro anticancer activity of curcumin-nimbin loaded nanoformulation in HCT-116 cell lines. Biofilm architecture and dynamics of the oral ecosystem. First identification report for amino acid composition of red algae Gracilaria spp. obtained from Central Java, Indonesia. Gliclazide protects ionizing radiation-induced intestinal injury in mice by inhibiting oxidative stress and caspase-3. Investigation of antioxidant, antimicrobial, and enzymatic properties of thermophilic cyanobacteria extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1