[Analysis of ischemic stroke biomarkers based on non-targeted metabolomics].

Fei Xu, Tian-Ping Liu, Ya-Jin Guan, Wei-Chao Hao, Ding-Sheng Wen, Shui-Lin Xie, Ya-Nan Bie
{"title":"[Analysis of ischemic stroke biomarkers based on non-targeted metabolomics].","authors":"Fei Xu, Tian-Ping Liu, Ya-Jin Guan, Wei-Chao Hao, Ding-Sheng Wen, Shui-Lin Xie, Ya-Nan Bie","doi":"10.3724/SP.J.1123.2024.02015","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarkers for ischemic stroke (IS) are yet to fulfill clinical requirements. This study used non-targeted metabolomics to investigate differential metabolites and metabolic pathways in plasma and brain tissue following IS, with the aim of identifying new potential biomarkers and therapeutic targets. Twelve Tibetan miniature pigs were randomly assigned to a model- or sham-operation group. An electrocoagulation-based anterior temporal approach was employed to occlude the middle cerebral artery, thereby creating a model for IS. Plasma and brain tissue samples were collected 36 h post-surgery and analyzed using liquid chromatography-mass spectrometry. Principal component and partial least squares discriminant analyses were used to screen for differential metabolites and exclude exogenous metabolites at <i>p</i><0.05. Compounds were classified according to the HMDB (Human Metabolome Database), and subjected to KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and VIP (variable importance in projection) analyses. Plasma metabolomics revealed that 86 metabolites were upregulated while 149 were downregulated, with (<i>Z</i>)-3-oxo-2-(2-pentenyl)-1-cyclopentylacetic acid, <i>trans</i>-cinnamic acid and cinnamoylglycine determined to be significant metabolites. Fifty-eight differential metabolites were upregulated in brain tissue and 53 were downregulated, with 2,3-dihydroflavon-3-ol, guanidinoacetic acid (GAA), <i>N</i>-acetyl-D-tryptophan, oxidized glutathione, 2-hydroxyquinoline, and <i>N</i>-acetyl-L-aspartate (NAA) identified as significant metabolites. Organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds, and organic oxygen compounds were found to be common compound categories among the top five types of compound in both plasma and brain tissue. Common metabolic pathways in plasma and brain tissue include amino acid metabolism, digestive system, cancer overview, and lipid metabolism pathways, with the (<i>Z</i>)-3-oxo-2-(2-pentenyl)-1-cyclopentylacetic acid, GAA, oxidized glutathione, and NAA metabolites serving as potential biomarkers. This study provides a theoretical foundation for the early screening and development of clinical treatment strategies for IS.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"43 2","pages":"139-147"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Se pu = Chinese journal of chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2024.02015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomarkers for ischemic stroke (IS) are yet to fulfill clinical requirements. This study used non-targeted metabolomics to investigate differential metabolites and metabolic pathways in plasma and brain tissue following IS, with the aim of identifying new potential biomarkers and therapeutic targets. Twelve Tibetan miniature pigs were randomly assigned to a model- or sham-operation group. An electrocoagulation-based anterior temporal approach was employed to occlude the middle cerebral artery, thereby creating a model for IS. Plasma and brain tissue samples were collected 36 h post-surgery and analyzed using liquid chromatography-mass spectrometry. Principal component and partial least squares discriminant analyses were used to screen for differential metabolites and exclude exogenous metabolites at p<0.05. Compounds were classified according to the HMDB (Human Metabolome Database), and subjected to KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and VIP (variable importance in projection) analyses. Plasma metabolomics revealed that 86 metabolites were upregulated while 149 were downregulated, with (Z)-3-oxo-2-(2-pentenyl)-1-cyclopentylacetic acid, trans-cinnamic acid and cinnamoylglycine determined to be significant metabolites. Fifty-eight differential metabolites were upregulated in brain tissue and 53 were downregulated, with 2,3-dihydroflavon-3-ol, guanidinoacetic acid (GAA), N-acetyl-D-tryptophan, oxidized glutathione, 2-hydroxyquinoline, and N-acetyl-L-aspartate (NAA) identified as significant metabolites. Organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds, and organic oxygen compounds were found to be common compound categories among the top five types of compound in both plasma and brain tissue. Common metabolic pathways in plasma and brain tissue include amino acid metabolism, digestive system, cancer overview, and lipid metabolism pathways, with the (Z)-3-oxo-2-(2-pentenyl)-1-cyclopentylacetic acid, GAA, oxidized glutathione, and NAA metabolites serving as potential biomarkers. This study provides a theoretical foundation for the early screening and development of clinical treatment strategies for IS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Analysis of ischemic stroke biomarkers based on non-targeted metabolomics]. [Reform and exploration of the experimental teaching mode of teaching assistant and group rotation system: taking pharmaceutical analysis experiment course as an example]. [Research advance of solid-phase microextraction based on covalent organic framework materials]. [Simultaneous determination of 51 indazole-type synthetic cannabinoids in urine and blood by online solid-phase extraction-liquid chromatography-linear ion trap mass spectrometry]. [Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1