[Simultaneous determination of 51 indazole-type synthetic cannabinoids in urine and blood by online solid-phase extraction-liquid chromatography-linear ion trap mass spectrometry].

Xuan Luo, Jun Zhang, Ding-Ji Zhu, Ke-Jian Huang, Ning Yang, Xiao-Feng Liu, Qiu-Lian Luo
{"title":"[Simultaneous determination of 51 indazole-type synthetic cannabinoids in urine and blood by online solid-phase extraction-liquid chromatography-linear ion trap mass spectrometry].","authors":"Xuan Luo, Jun Zhang, Ding-Ji Zhu, Ke-Jian Huang, Ning Yang, Xiao-Feng Liu, Qiu-Lian Luo","doi":"10.3724/SP.J.1123.2024.02008","DOIUrl":null,"url":null,"abstract":"<p><p>To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021. However, new SCs obtained through structural modification are still appearing and pose significant analytical challenges for forensic laboratories. Therefore, an efficient, green, and automated detection method is urgently required to provide technical support for the accurate screening actual samples. Meanwhile, the number of indazole-type SCs has increased sharply since 2013, which is ascribable to their stronger psychoactive effects. Indeed, forensic laboratories mainly analyze this key SC subclass. Therefore, in this study, we developed a new method for analyzing 51 indazole-type SCs in human urine and blood, which involves online solid-phase extraction (online SPE) as the preprocessing technology, with analysis performed using liquid chromatography-linear ion trap mass spectrometry. Deproteinization was achieved by adding acetonitrile, with dilution performed using 10 mmol/L ammonium acetate solution (pH 4.8) containing 0.1% formic acid. Samples were then analyzed directly using acetonitrile-10 mmol/L ammonium acetate aqueous solution (containing 0.1% formic acid) as the mobile phase. The mass-to-charge ratios of protonated molecular ions ([M+H]<sup>+</sup>) in the mass spectra acquired in full-scan mode, and the retention times in the chromatograms of the analytes were selected with the aim of monitoring the MS<sup>2</sup> ions of the various compounds. Characteristic fragment ions of the various SC structures were summarized, with five groups of isomers, each containing ten compounds, successfully distinguished using multistage mass spectrometry and their retention times. Multistage MS was used to qualitatively screen 51 indazole-type SCs, which were then quantitatively analyzed using MS<sup>2</sup> ion pairs (as quantitative ion pairs). The analytes exhibited limits of detection (LODs) of 0.02-1 ng/mL, with limits of quantification (LOQs) of 0.04-4 and 0.1-4 ng/mL in urine and blood, respectively. Linear fitting (weighting factor 1/<i>x</i>) revealed good linearity for each analyte within its respective linear range, with correlation coefficients (<i>R</i><sup>2</sup>) greater than 0.99 in both urine and blood. The validity of the analytical method was tested by determining precision and spiked recovery values (<i>n</i>=6). Recoveries of 83.47%-116.95% were obtained at LOQ levels, with precisions of 2.29%-13.40%. In addition, recoveries of 86.63%-113.38% and precisions of 0.58%-13.79% were obtained at low, medium, and high levels. The method described herein is not only easy to operate but also can be automated. Indeed, high-throughput sample analysis was achieved when sample extraction, enrichment, and analysis were performed in dynamic mode through valve switching. Meanwhile, the method exhibited good sensitivity and is applicable to a wider range of compounds than those previously reported; it also provides a scientific basis and technical support for the rapid screening and quantitative analysis of SCs in actual relevant cases.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"43 2","pages":"164-176"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Se pu = Chinese journal of chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2024.02008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021. However, new SCs obtained through structural modification are still appearing and pose significant analytical challenges for forensic laboratories. Therefore, an efficient, green, and automated detection method is urgently required to provide technical support for the accurate screening actual samples. Meanwhile, the number of indazole-type SCs has increased sharply since 2013, which is ascribable to their stronger psychoactive effects. Indeed, forensic laboratories mainly analyze this key SC subclass. Therefore, in this study, we developed a new method for analyzing 51 indazole-type SCs in human urine and blood, which involves online solid-phase extraction (online SPE) as the preprocessing technology, with analysis performed using liquid chromatography-linear ion trap mass spectrometry. Deproteinization was achieved by adding acetonitrile, with dilution performed using 10 mmol/L ammonium acetate solution (pH 4.8) containing 0.1% formic acid. Samples were then analyzed directly using acetonitrile-10 mmol/L ammonium acetate aqueous solution (containing 0.1% formic acid) as the mobile phase. The mass-to-charge ratios of protonated molecular ions ([M+H]+) in the mass spectra acquired in full-scan mode, and the retention times in the chromatograms of the analytes were selected with the aim of monitoring the MS2 ions of the various compounds. Characteristic fragment ions of the various SC structures were summarized, with five groups of isomers, each containing ten compounds, successfully distinguished using multistage mass spectrometry and their retention times. Multistage MS was used to qualitatively screen 51 indazole-type SCs, which were then quantitatively analyzed using MS2 ion pairs (as quantitative ion pairs). The analytes exhibited limits of detection (LODs) of 0.02-1 ng/mL, with limits of quantification (LOQs) of 0.04-4 and 0.1-4 ng/mL in urine and blood, respectively. Linear fitting (weighting factor 1/x) revealed good linearity for each analyte within its respective linear range, with correlation coefficients (R2) greater than 0.99 in both urine and blood. The validity of the analytical method was tested by determining precision and spiked recovery values (n=6). Recoveries of 83.47%-116.95% were obtained at LOQ levels, with precisions of 2.29%-13.40%. In addition, recoveries of 86.63%-113.38% and precisions of 0.58%-13.79% were obtained at low, medium, and high levels. The method described herein is not only easy to operate but also can be automated. Indeed, high-throughput sample analysis was achieved when sample extraction, enrichment, and analysis were performed in dynamic mode through valve switching. Meanwhile, the method exhibited good sensitivity and is applicable to a wider range of compounds than those previously reported; it also provides a scientific basis and technical support for the rapid screening and quantitative analysis of SCs in actual relevant cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Analysis of ischemic stroke biomarkers based on non-targeted metabolomics]. [Reform and exploration of the experimental teaching mode of teaching assistant and group rotation system: taking pharmaceutical analysis experiment course as an example]. [Research advance of solid-phase microextraction based on covalent organic framework materials]. [Simultaneous determination of 51 indazole-type synthetic cannabinoids in urine and blood by online solid-phase extraction-liquid chromatography-linear ion trap mass spectrometry]. [Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1