[Research advance of solid-phase microextraction based on covalent organic framework materials].

Ying-Chao Cheng, Yi-Yang Gao, Xiao-Min Li, Lu-Yu Chen, Fang DU, Jie Guo, Yi-Tong Meng, Min Sun, Juan-Juan Feng
{"title":"[Research advance of solid-phase microextraction based on covalent organic framework materials].","authors":"Ying-Chao Cheng, Yi-Yang Gao, Xiao-Min Li, Lu-Yu Chen, Fang DU, Jie Guo, Yi-Tong Meng, Min Sun, Juan-Juan Feng","doi":"10.3724/SP.J.1123.2024.01002","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect. Therefore, the development of new and efficient extractive coating materials remains a hot topic in the analytical chemistry and sample preparation fields. Covalent organic frameworks (COFs) are a kind of porous crystalline network polymer materials formed by covalent bonds. Owing to the advantages of large specific surface area, high porosity, good stability, high designability, simple synthesis and post-modification, etc., it has been widely used in gas adsorption, catalysis, sensing and drug delivery. In recent years, COFs have attracted much attention in the field of sample preparation. A variety of novel COF-based SPME materials had been developed for extracting and enriching various types of analytes through <i>π</i>-<i>π</i> interaction, hydrophilic/hydrophobic interaction, electrostatic adsorption, and hydrogen-bonding, as well as pore effects. In this paper, the research advances of COFs for using in fiber-, in tube-, and membrane-based SPME over the past three years were discussed. Fiber surfaces had been modified with functionalized COFs or COF-hybrid materials for use in SPME through physical coating, in-situ growth, and chemical-bonding approaches. The combination of SPME fiber and chromatographic analysis can be used to detect a variety of analytes such as polycyclic aromatic hydrocarbons, phthalates, polychlorinated biphenyls, and pesticides in environmental and food samples, with good enrichment effects, wide linear ranges, and high sensitivity. Based on in tube-SPME, COFs-based monolithic column and fiber-filled tube as the extraction tubes were combined with high performance liquid chromatography online to develop highly sensitive detection methods for synthetic phenolic antioxidants and bisphenol compounds, respectively. In addition, COFs had also been used in membrane SPME technique, showing high efficiency in the extraction of trace polychlorinated biphenyls in environmental water. Finally, the development trends of COFs in the field of SPME was prospected.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"43 2","pages":"120-130"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Se pu = Chinese journal of chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2024.01002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect. Therefore, the development of new and efficient extractive coating materials remains a hot topic in the analytical chemistry and sample preparation fields. Covalent organic frameworks (COFs) are a kind of porous crystalline network polymer materials formed by covalent bonds. Owing to the advantages of large specific surface area, high porosity, good stability, high designability, simple synthesis and post-modification, etc., it has been widely used in gas adsorption, catalysis, sensing and drug delivery. In recent years, COFs have attracted much attention in the field of sample preparation. A variety of novel COF-based SPME materials had been developed for extracting and enriching various types of analytes through π-π interaction, hydrophilic/hydrophobic interaction, electrostatic adsorption, and hydrogen-bonding, as well as pore effects. In this paper, the research advances of COFs for using in fiber-, in tube-, and membrane-based SPME over the past three years were discussed. Fiber surfaces had been modified with functionalized COFs or COF-hybrid materials for use in SPME through physical coating, in-situ growth, and chemical-bonding approaches. The combination of SPME fiber and chromatographic analysis can be used to detect a variety of analytes such as polycyclic aromatic hydrocarbons, phthalates, polychlorinated biphenyls, and pesticides in environmental and food samples, with good enrichment effects, wide linear ranges, and high sensitivity. Based on in tube-SPME, COFs-based monolithic column and fiber-filled tube as the extraction tubes were combined with high performance liquid chromatography online to develop highly sensitive detection methods for synthetic phenolic antioxidants and bisphenol compounds, respectively. In addition, COFs had also been used in membrane SPME technique, showing high efficiency in the extraction of trace polychlorinated biphenyls in environmental water. Finally, the development trends of COFs in the field of SPME was prospected.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Analysis of ischemic stroke biomarkers based on non-targeted metabolomics]. [Reform and exploration of the experimental teaching mode of teaching assistant and group rotation system: taking pharmaceutical analysis experiment course as an example]. [Research advance of solid-phase microextraction based on covalent organic framework materials]. [Simultaneous determination of 51 indazole-type synthetic cannabinoids in urine and blood by online solid-phase extraction-liquid chromatography-linear ion trap mass spectrometry]. [Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1