Lautaro A. M. Giaimo , Dr. Leticia Lafuente , Dr. Romina N. Fernández Varela , Dr. Matías L. Nóbile , Dr. Adolfo M. Iribarren , Dr. Elizabeth S. Lewkowicz
{"title":"Synthesis of 4‐Iodoimidazole Nucleosides: A Biocatalyzed Whole Cell Approach","authors":"Lautaro A. M. Giaimo , Dr. Leticia Lafuente , Dr. Romina N. Fernández Varela , Dr. Matías L. Nóbile , Dr. Adolfo M. Iribarren , Dr. Elizabeth S. Lewkowicz","doi":"10.1002/ejoc.202400950","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleoside analogues are biologically active drugs that are well known for their therapeutic properties. Chemical synthesis of these compounds is complex due to time constraints, contaminant methodologies, and numerous steps involved. In contrast, biocatalyzed synthesis, particularly using microorganisms, offers many advantages. In this work, we introduce the synthesis of 4‐iodoimidazole‐ribonucleoside, through a microbial transglycosylation biocatalyzed by <em>Erwinia amylovora</em> whole cells, selected as the optimal catalyst for this biotransformation upon evaluating our microbial collection. Parameters were analyzed to optimize the reaction, and the use of this biocatalyst in transglycosylation with other natural and non‐natural bases and different sugar donor nucleosides was also verified.</div></div>","PeriodicalId":167,"journal":{"name":"European Journal of Organic Chemistry","volume":"28 7","pages":"Article e202400950"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1434193X25000684","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleoside analogues are biologically active drugs that are well known for their therapeutic properties. Chemical synthesis of these compounds is complex due to time constraints, contaminant methodologies, and numerous steps involved. In contrast, biocatalyzed synthesis, particularly using microorganisms, offers many advantages. In this work, we introduce the synthesis of 4‐iodoimidazole‐ribonucleoside, through a microbial transglycosylation biocatalyzed by Erwinia amylovora whole cells, selected as the optimal catalyst for this biotransformation upon evaluating our microbial collection. Parameters were analyzed to optimize the reaction, and the use of this biocatalyst in transglycosylation with other natural and non‐natural bases and different sugar donor nucleosides was also verified.
期刊介绍:
The European Journal of Organic Chemistry (2019 ISI Impact Factor 2.889) publishes Full Papers, Communications, and Minireviews from the entire spectrum of synthetic organic, bioorganic and physical-organic chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form two leading journals, the European Journal of Organic Chemistry and the European Journal of Inorganic Chemistry:
Liebigs Annalen
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry.