Downregulation of RSAD2 ameliorates keratinocyte hyperproliferation and skin inflammation in psoriasis via the TAK1/NF-κB axis.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Biochemical pharmacology Pub Date : 2025-01-21 DOI:10.1016/j.bcp.2025.116764
Xueqing Li, Fuqiang Chen, Yunqian Li, Yunyue Zhen, Jiaoying Ju, Zhengjun Li, Shan Huang, Qing Sun
{"title":"Downregulation of RSAD2 ameliorates keratinocyte hyperproliferation and skin inflammation in psoriasis via the TAK1/NF-κB axis.","authors":"Xueqing Li, Fuqiang Chen, Yunqian Li, Yunyue Zhen, Jiaoying Ju, Zhengjun Li, Shan Huang, Qing Sun","doi":"10.1016/j.bcp.2025.116764","DOIUrl":null,"url":null,"abstract":"<p><p>Immune cell infiltration and keratinocyte (KC) hyperproliferation are characteristics of psoriasis. Radical S-adenosyl methionine domain-containing 2 (RSAD2) plays an integral role in the innate immune response and is associated with various immune-related diseases. However, RSAD2's expression and role in modulating immune responses in psoriasis remain unexplored. In this study, we demonstrated a significant upregulation of RSAD2 expression in both psoriatic lesions and psoriasis-like mouse epidermis, with its expression positively correlated with psoriasis severity. In psoriatic cell models, RSAD2 was shown to promote the proliferation and secretion of pro-inflammatory cytokines by activating the transforming growth factor-β-activated kinase 1 (TAK1)-mediated nuclear factor kappa-B (NF-κB) signaling pathway. Additionally, it was found that the expression of RSAD2 is increased by the action of interferon regulatory factor-1 (IRF1), which binds to the promoter region of RSAD2. Therefore, the function of RSAD2 in psoriasis is regulated by IRF1. Notably, RSAD2 inhibition decreased epidermal hyperplasia and alleviated imiquimod (IMQ)-induced psoriatic dermatitis. In summary, our study highlights the modulation of the IRF1-RSAD2-TAK1 axis as a potential innovative therapeutic approach for psoriasis, offering new insights into the molecular mechanisms by which KCs drive inflammation in psoriasis.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"116764"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2025.116764","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune cell infiltration and keratinocyte (KC) hyperproliferation are characteristics of psoriasis. Radical S-adenosyl methionine domain-containing 2 (RSAD2) plays an integral role in the innate immune response and is associated with various immune-related diseases. However, RSAD2's expression and role in modulating immune responses in psoriasis remain unexplored. In this study, we demonstrated a significant upregulation of RSAD2 expression in both psoriatic lesions and psoriasis-like mouse epidermis, with its expression positively correlated with psoriasis severity. In psoriatic cell models, RSAD2 was shown to promote the proliferation and secretion of pro-inflammatory cytokines by activating the transforming growth factor-β-activated kinase 1 (TAK1)-mediated nuclear factor kappa-B (NF-κB) signaling pathway. Additionally, it was found that the expression of RSAD2 is increased by the action of interferon regulatory factor-1 (IRF1), which binds to the promoter region of RSAD2. Therefore, the function of RSAD2 in psoriasis is regulated by IRF1. Notably, RSAD2 inhibition decreased epidermal hyperplasia and alleviated imiquimod (IMQ)-induced psoriatic dermatitis. In summary, our study highlights the modulation of the IRF1-RSAD2-TAK1 axis as a potential innovative therapeutic approach for psoriasis, offering new insights into the molecular mechanisms by which KCs drive inflammation in psoriasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical pharmacology
Biochemical pharmacology 医学-药学
CiteScore
10.30
自引率
1.70%
发文量
420
审稿时长
17 days
期刊介绍: Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics. The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process. All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review. While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.
期刊最新文献
Acute myeloid leukemia with t(8;21) translocation: Molecular pathogenesis, potential therapeutics and future directions. The novel use of the CFTR corrector C17 in muscular dystrophy: Pharmacological profile and in vivo efficacy. An Introduction to the Special Issue "9th International Conference on Relaxin and Related Peptides". The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1