Informing Planetary Protection Policies for the Future Exploration of Ceres: State of Understanding after the Dawn Mission.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2025-01-01 DOI:10.1089/ast.2024.0066
Julie Castillo-Rogez, Lynnae C Quick, Marc Neveu, Jennifer Scully, Tom A Nordheim, Brian Clement, Laura Newlin, Nico Schmedemann, Amanda Hendrix, Carol Raymond, Marc Rayman
{"title":"Informing Planetary Protection Policies for the Future Exploration of Ceres: State of Understanding after the Dawn Mission.","authors":"Julie Castillo-Rogez, Lynnae C Quick, Marc Neveu, Jennifer Scully, Tom A Nordheim, Brian Clement, Laura Newlin, Nico Schmedemann, Amanda Hendrix, Carol Raymond, Marc Rayman","doi":"10.1089/ast.2024.0066","DOIUrl":null,"url":null,"abstract":"<p><p>We review the current state of understanding of Ceres as it relates to planetary protection policy for future landed missions, including for sample return, to the dwarf planet. The Dawn mission found Ceres to be an intriguing target for a mission, with evidence for the presence of regional, possibly extensive liquid at depth, and local expressions of recent and potentially ongoing activity. The Dawn mission also found a high abundance of carbon in the regolith, interpreted as a mix of carbonates and amorphous carbon, as well as locally high concentrations of organic matter. Key findings from this review are as follows: (1) outside of the region of Occator crater, Ceres shows no geological evidence for conduits from the surface to the interior; and (2) considering the biological potential of Ceres' deep interior, a surface sample return mission should be considered Category V restricted, unless it can be demonstrated that evaporites sourced from Ceres' deep brine region, and recently exposed in Occator crater, have not been scattered to the rest of Ceres' surface; in that case, the probability of returning an unsterilized particle to an acceptably low value is to be determined by a future study.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"25 1","pages":"82-95"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We review the current state of understanding of Ceres as it relates to planetary protection policy for future landed missions, including for sample return, to the dwarf planet. The Dawn mission found Ceres to be an intriguing target for a mission, with evidence for the presence of regional, possibly extensive liquid at depth, and local expressions of recent and potentially ongoing activity. The Dawn mission also found a high abundance of carbon in the regolith, interpreted as a mix of carbonates and amorphous carbon, as well as locally high concentrations of organic matter. Key findings from this review are as follows: (1) outside of the region of Occator crater, Ceres shows no geological evidence for conduits from the surface to the interior; and (2) considering the biological potential of Ceres' deep interior, a surface sample return mission should be considered Category V restricted, unless it can be demonstrated that evaporites sourced from Ceres' deep brine region, and recently exposed in Occator crater, have not been scattered to the rest of Ceres' surface; in that case, the probability of returning an unsterilized particle to an acceptably low value is to be determined by a future study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Ammonia or Methanol Would Enable Subsurface Liquid Water at the Martian South Pole. Proteomic Insights into Psychrophile Growth in Perchlorate-Amended Subzero Conditions: Implications for Martian Life Detection. Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station. Correction to: Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes (Doi: 10.1089/Ast.2024.0096). CO2 and H2S in Abiogenic Hydrocarbon Synthesis and the Emergence of Prebiological States.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1