Production of Organic Precursors via Meteoritic Impacts and Its Implications for Prebiotic Inventory of Early Planetary Surfaces.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2025-01-01 DOI:10.1089/ast.2023.0031
Benjamin Farcy, Ziqin Ni, Ricardo Arevalo, Michael Eller, Veronica T Pinnick, Emile A Schweikert, William B Brinckerhoff
{"title":"Production of Organic Precursors via Meteoritic Impacts and Its Implications for Prebiotic Inventory of Early Planetary Surfaces.","authors":"Benjamin Farcy, Ziqin Ni, Ricardo Arevalo, Michael Eller, Veronica T Pinnick, Emile A Schweikert, William B Brinckerhoff","doi":"10.1089/ast.2023.0031","DOIUrl":null,"url":null,"abstract":"<p><p>Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed <sup>13</sup>C<sub>60</sub><sup>+</sup> projectiles and laser ablation. In the first approach, a <sup>13</sup>C<sub>60</sub><sup>+</sup> beam was accelerated to collide with ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces. In a complementary investigation, a high-power laser was focused on a mixture of calcium carbonate (CaCO<sub>3</sub>) and either ammonium chloride (NH<sub>4</sub>Cl) or sodium nitrate (NaNO<sub>3</sub>) to induce atomization and enable the study of molecular recombination in the postimpact plume. Additionally, isotopically spiked starting material, namely, Ca<sup>13</sup>CO<sub>3</sub>, <sup>15</sup>NH<sub>4</sub>Cl, Na<sup>15</sup>NO<sub>3</sub>, and <sup>15</sup>NH<sub>4</sub><sup>15</sup>NO<sub>3</sub>, was also employed to disambiguate the source of prebiotic molecule production in the resulting recombination plume. Both experiments independently demonstrated the formation of CN<sup>-</sup> ions as recombination products, with characteristic mass peak shifts corresponding to the isotopic labeling of the starting material. Yield curves generated from the laser experiments using varying ratios of calcite and NH<sub>4</sub>Cl or NaNO<sub>3</sub> indicate that nitrate enables more efficient production of CN<sup>-</sup> than ammonium. Thermodynamic software modeling of the laser ablation plume confirmed and further elucidated the experimental yield results, producing good agreement of modeled CN<sup>-</sup> yield with observed yield curves. These models indicate that the reduction of atomic N from incomplete NH<sub>4</sub><sup>-</sup> atomization during the ablation pulse may have contributed to the lower CN<sup>-</sup> yield from the ammonia source relative to the nitrate source. The results of these experiments demonstrated that CN<sup>-</sup>, and by proxy, hydrogen cyanide, and other organic precursor molecules could have formed from carbonate deposits, a previously under-appreciated source of organic carbon for impact-induced organic synthesis. These results have implications for the formation of life during meteoritic bombardment on early Earth as well as for other carbonate-bearing planetary bodies such as Mars and Ceres.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"25 1","pages":"60-71"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0031","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed 13C60+ projectiles and laser ablation. In the first approach, a 13C60+ beam was accelerated to collide with ammonium nitrate (NH4NO3) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces. In a complementary investigation, a high-power laser was focused on a mixture of calcium carbonate (CaCO3) and either ammonium chloride (NH4Cl) or sodium nitrate (NaNO3) to induce atomization and enable the study of molecular recombination in the postimpact plume. Additionally, isotopically spiked starting material, namely, Ca13CO3, 15NH4Cl, Na15NO3, and 15NH415NO3, was also employed to disambiguate the source of prebiotic molecule production in the resulting recombination plume. Both experiments independently demonstrated the formation of CN- ions as recombination products, with characteristic mass peak shifts corresponding to the isotopic labeling of the starting material. Yield curves generated from the laser experiments using varying ratios of calcite and NH4Cl or NaNO3 indicate that nitrate enables more efficient production of CN- than ammonium. Thermodynamic software modeling of the laser ablation plume confirmed and further elucidated the experimental yield results, producing good agreement of modeled CN- yield with observed yield curves. These models indicate that the reduction of atomic N from incomplete NH4- atomization during the ablation pulse may have contributed to the lower CN- yield from the ammonia source relative to the nitrate source. The results of these experiments demonstrated that CN-, and by proxy, hydrogen cyanide, and other organic precursor molecules could have formed from carbonate deposits, a previously under-appreciated source of organic carbon for impact-induced organic synthesis. These results have implications for the formation of life during meteoritic bombardment on early Earth as well as for other carbonate-bearing planetary bodies such as Mars and Ceres.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station. Beyond Homochirality: Computer Modeling Hints of Heterochiral Proteins in Early and Extraterrestrial Life. The Space Radiobiological Exposure Facility on the China Space Station. Amplicon Sequencing Reveals Diversity in Spatially Separated Microbial Communities in the Icelandic Mars Analog Environment Mælifellssandur. A One-Dimensional Energy Balance Model Parameterization for the Formation of CO2 Ice on the Surfaces of Eccentric Extrasolar Planets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1