Repeatome landscapes and cytogenetics of hortensias provide a framework to trace Hydrangea evolution and domestication.

IF 3.6 2区 生物学 Q1 PLANT SCIENCES Annals of botany Pub Date : 2025-01-23 DOI:10.1093/aob/mcae184
Sara Ishiguro, Shota Taniguchi, Nicola Schmidt, Matthias Jost, Stefan Wanke, Tony Heitkam, Nobuko Ohmido
{"title":"Repeatome landscapes and cytogenetics of hortensias provide a framework to trace Hydrangea evolution and domestication.","authors":"Sara Ishiguro, Shota Taniguchi, Nicola Schmidt, Matthias Jost, Stefan Wanke, Tony Heitkam, Nobuko Ohmido","doi":"10.1093/aob/mcae184","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe. The phenotypic diversity of hortensia cultivars, hybrids and wild relatives is mirrored by their genomic variation, with differences in genome size, base chromosome numbers and ploidy level. We aim to understand the genomic and chromosomal basis of hortensia genome variation. Therefore, we analysed six hortensias with different origins and chromosomal setups for repeatome divergence, the genome fraction with the highest sequence turnover. This holds information from the hortensias' evolutionary paths and can guide breeding initiatives.</p><p><strong>Methods: </strong>We compiled a hortensia genotype panel representing members of the sections Macrophyllae, Hydrangea, Asperae and Heteromallae and reconstructed a plastome-based phylogenetic hypothesis as the evolutionary basis for all our analyses. We comprehensively characterized the repeatomes by whole-genome sequencing and comparative repeat clustering. Major tandem repeats were localized by multicolour FISH.</p><p><strong>Key results: </strong>The Hydrangea species show differing repeat profiles reflecting their separation into the two major Hydrangea clades: diploid Hydrangea species from Japan show a conserved repeat profile, distinguishing them from Japanese polyploids as well as Chinese and American hortensias. These results are in line with plastome-based phylogenies. The presence of specific repeats indicates that H. paniculata was not polyploidized directly from the common ancestor of Japanese Hydrangea species, but evolved from a distinct progenitor. Major satellite DNAs were detected over all H. macrophylla chromosomes.</p><p><strong>Conclusions: </strong>Repeat composition among the Hydrangea species varies in congruence with their origins and phylogeny. Identified species-specific satDNAs may be used as cytogenetic markers to identify Hydrangea species and cultivars, and to infer parental species of old Hydrangea varieties. This repeatome and cytogenetics information helps to expand the genetic toolbox for tracing hortensia evolution and guiding future hortensia breeding.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae184","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe. The phenotypic diversity of hortensia cultivars, hybrids and wild relatives is mirrored by their genomic variation, with differences in genome size, base chromosome numbers and ploidy level. We aim to understand the genomic and chromosomal basis of hortensia genome variation. Therefore, we analysed six hortensias with different origins and chromosomal setups for repeatome divergence, the genome fraction with the highest sequence turnover. This holds information from the hortensias' evolutionary paths and can guide breeding initiatives.

Methods: We compiled a hortensia genotype panel representing members of the sections Macrophyllae, Hydrangea, Asperae and Heteromallae and reconstructed a plastome-based phylogenetic hypothesis as the evolutionary basis for all our analyses. We comprehensively characterized the repeatomes by whole-genome sequencing and comparative repeat clustering. Major tandem repeats were localized by multicolour FISH.

Key results: The Hydrangea species show differing repeat profiles reflecting their separation into the two major Hydrangea clades: diploid Hydrangea species from Japan show a conserved repeat profile, distinguishing them from Japanese polyploids as well as Chinese and American hortensias. These results are in line with plastome-based phylogenies. The presence of specific repeats indicates that H. paniculata was not polyploidized directly from the common ancestor of Japanese Hydrangea species, but evolved from a distinct progenitor. Major satellite DNAs were detected over all H. macrophylla chromosomes.

Conclusions: Repeat composition among the Hydrangea species varies in congruence with their origins and phylogeny. Identified species-specific satDNAs may be used as cytogenetic markers to identify Hydrangea species and cultivars, and to infer parental species of old Hydrangea varieties. This repeatome and cytogenetics information helps to expand the genetic toolbox for tracing hortensia evolution and guiding future hortensia breeding.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
期刊最新文献
Monitoring genetic diversity of Torminalis glaberrima for resilient forests in the face of population fragmentation. Niche shift and localized competitive dynamics influence the persistence and distribution of polyploids in the genus Achillea (Asteraceae). A systematic review suggests extension and redefinition of a food-deception pollination syndrome involving anautogenous flies. Genome-Wide Analysis of the CsAP2/ERF Gene Family of Sweet Orange (Citrus sinensis) and Joint Analysis of Transcriptional Metabolism under Salt Stress. Repeatome landscapes and cytogenetics of hortensias provide a framework to trace Hydrangea evolution and domestication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1