Phosphorylation of PA at serine 225 enhances viral fitness of the highly pathogenic H5N1 avian influenza virus in mice

IF 2.4 2区 农林科学 Q3 MICROBIOLOGY Veterinary microbiology Pub Date : 2025-01-20 DOI:10.1016/j.vetmic.2025.110400
Manyu Zhang , Zixiong Zeng , Xia Chen , Guoqing Wang , Xinxin Cai , Zenglei Hu , Min Gu , Shunlin Hu , Xiaowen Liu , Xiaoquan Wang , Daxin Peng , Jiao Hu , Xiufan Liu
{"title":"Phosphorylation of PA at serine 225 enhances viral fitness of the highly pathogenic H5N1 avian influenza virus in mice","authors":"Manyu Zhang ,&nbsp;Zixiong Zeng ,&nbsp;Xia Chen ,&nbsp;Guoqing Wang ,&nbsp;Xinxin Cai ,&nbsp;Zenglei Hu ,&nbsp;Min Gu ,&nbsp;Shunlin Hu ,&nbsp;Xiaowen Liu ,&nbsp;Xiaoquan Wang ,&nbsp;Daxin Peng ,&nbsp;Jiao Hu ,&nbsp;Xiufan Liu","doi":"10.1016/j.vetmic.2025.110400","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, there is increasing spillover of highly pathogenic H5N1 avian influenza virus (AIV) to mammals, raising a concern of pandemic threat about this virus. Although the function of PA protein of the influenza virus is well understood, the understanding of how phosphorylation regulates this protein and influenza viral life cycle is still limited. We previously identified PA S225 as the phosphorylation site in the highly pathogenic H5N1 AIV. In this study, we investigated the role of phosphorylation in regulating PA function and viral fitness through dephosphorylation (PA S225A) or continuous phosphorylation (PA S225E)-mimetic mutation of PA S225. Structure analysis revealed that PA S225A or PA S225E mutation had no obvious effect on the structure of PA protein. Replication assay <em>in vitro</em> showed that PA S225A phosphorylation-ablative mutation significantly inhibited virus replication both in mammalian and avian-derived cells, while PA S225E enhanced viral replication in these cells. Correspondingly, PA S225A dephosphorylation significantly attenuated viral replication and virulence in mice, while PA S225E enhanced these aspects in mice. Mechanistically, PA S225A mutation significantly decreased viral polymerase activity, disabled viral ribonucleoprotein complex (vRNP) assembly and attenuated PA nuclear accumulation. Altogether, our study directly suggested that phosphorylation of PA protein at site S225 enhances viral fitness of the highly pathogenic H5N1 virus in mammals by assuring effective vRNP activity, providing a framework for further study of phosphorylation events in influenza virus life cycle.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"302 ","pages":"Article 110400"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000355","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, there is increasing spillover of highly pathogenic H5N1 avian influenza virus (AIV) to mammals, raising a concern of pandemic threat about this virus. Although the function of PA protein of the influenza virus is well understood, the understanding of how phosphorylation regulates this protein and influenza viral life cycle is still limited. We previously identified PA S225 as the phosphorylation site in the highly pathogenic H5N1 AIV. In this study, we investigated the role of phosphorylation in regulating PA function and viral fitness through dephosphorylation (PA S225A) or continuous phosphorylation (PA S225E)-mimetic mutation of PA S225. Structure analysis revealed that PA S225A or PA S225E mutation had no obvious effect on the structure of PA protein. Replication assay in vitro showed that PA S225A phosphorylation-ablative mutation significantly inhibited virus replication both in mammalian and avian-derived cells, while PA S225E enhanced viral replication in these cells. Correspondingly, PA S225A dephosphorylation significantly attenuated viral replication and virulence in mice, while PA S225E enhanced these aspects in mice. Mechanistically, PA S225A mutation significantly decreased viral polymerase activity, disabled viral ribonucleoprotein complex (vRNP) assembly and attenuated PA nuclear accumulation. Altogether, our study directly suggested that phosphorylation of PA protein at site S225 enhances viral fitness of the highly pathogenic H5N1 virus in mammals by assuring effective vRNP activity, providing a framework for further study of phosphorylation events in influenza virus life cycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Veterinary microbiology
Veterinary microbiology 农林科学-兽医学
CiteScore
5.90
自引率
6.10%
发文量
221
审稿时长
52 days
期刊介绍: Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal. Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge. Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.
期刊最新文献
Editorial Board Critical role for heat shock protein 70 in viral replication of ALV-J via interaction with gp37 and P32 Development of a multiplex PCR assay for detection of Riemerella anatipestifer serotype 1 and serotype 2 strains Porcine epidemic diarrhea virus induces mitophagy to inhibit the apoptosis and activation of JAK/STAT1 pathway Genomic characteristics and antimicrobial resistance of the underreported zoonotic pathogen Streptococcus pasteurianus and its co-colonization with Streptococcus suis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1