Xin Li , Yiwan Wu , Jin Peng , Bingjie Li , XiaoLong Li , Zhibin Yan , Gen Li , Yue Zhang , HongLing He , Jun Luo , Xiaofeng Guo
{"title":"Porcine epidemic diarrhea virus induces mitophagy to inhibit the apoptosis and activation of JAK/STAT1 pathway","authors":"Xin Li , Yiwan Wu , Jin Peng , Bingjie Li , XiaoLong Li , Zhibin Yan , Gen Li , Yue Zhang , HongLing He , Jun Luo , Xiaofeng Guo","doi":"10.1016/j.vetmic.2025.110427","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine epidemic diarrhea virus (PEDV) infection leads to immunosuppression and clinical symptoms in piglets, including vomiting, watery diarrhea, dehydration, and even death. Mitophagy sustains mitochondrial energy homeostasis and quality through the removal of damaged mitochondria. However, PEDV disrupts mitochondrial homeostasis, which affects cellular energy supply and reproduction. Despite existing research, the mechanisms underlying PEDV pathogenesis and its interaction with the innate immune system remain largely unclear. Therefore, we aimed to clarify the mechanism of PEDV-induced mitophagy and its relationship with apoptosis and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway after PEDV infection. We infected Vero and IPEC-J2 cells with PEDV. Then, we evaluated mitochondrial morphology, structural proteins of PEDV, reactive oxygen species (ROS) levels, and mitochondrial membrane potential using transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry. We identified mitophagy-related proteins through immunoprecipitation and western blotting. We examined the effects of mitophagy on PEDV proliferation and JAK1-STAT1 signaling via western blotting and indirect immunofluorescence. PEDV infection led to mitochondrial damage and the production of mitophagosome-like vesicles. Subsequently, the PEDV structural N protein initiated mitophagy through ubiquitinating mitofusin 2 (MNF2) via the PINK1/Parkin pathway. Moreover, mitophagy promoted PEDV replication. In the early stage of PEDV infection, PEDV infection inhibits apoptosis by promoting mitophagy. PEDV infection significantly decreased the expression of JAK1, STAT1, interferon regulatory factor 9, and phosphorylated STAT1, inhibiting nuclear translocation and promoting replication. Overall, PINK1/Parkin-mediated mitophagy regulated PEDV-induced apoptosis and JAK/STAT1 expression. These findings provide a scientific basis for elucidating the pathogenic and immune escape mechanisms of PEDV.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"303 ","pages":"Article 110427"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000628","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine epidemic diarrhea virus (PEDV) infection leads to immunosuppression and clinical symptoms in piglets, including vomiting, watery diarrhea, dehydration, and even death. Mitophagy sustains mitochondrial energy homeostasis and quality through the removal of damaged mitochondria. However, PEDV disrupts mitochondrial homeostasis, which affects cellular energy supply and reproduction. Despite existing research, the mechanisms underlying PEDV pathogenesis and its interaction with the innate immune system remain largely unclear. Therefore, we aimed to clarify the mechanism of PEDV-induced mitophagy and its relationship with apoptosis and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway after PEDV infection. We infected Vero and IPEC-J2 cells with PEDV. Then, we evaluated mitochondrial morphology, structural proteins of PEDV, reactive oxygen species (ROS) levels, and mitochondrial membrane potential using transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry. We identified mitophagy-related proteins through immunoprecipitation and western blotting. We examined the effects of mitophagy on PEDV proliferation and JAK1-STAT1 signaling via western blotting and indirect immunofluorescence. PEDV infection led to mitochondrial damage and the production of mitophagosome-like vesicles. Subsequently, the PEDV structural N protein initiated mitophagy through ubiquitinating mitofusin 2 (MNF2) via the PINK1/Parkin pathway. Moreover, mitophagy promoted PEDV replication. In the early stage of PEDV infection, PEDV infection inhibits apoptosis by promoting mitophagy. PEDV infection significantly decreased the expression of JAK1, STAT1, interferon regulatory factor 9, and phosphorylated STAT1, inhibiting nuclear translocation and promoting replication. Overall, PINK1/Parkin-mediated mitophagy regulated PEDV-induced apoptosis and JAK/STAT1 expression. These findings provide a scientific basis for elucidating the pathogenic and immune escape mechanisms of PEDV.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.