Frustrated Lewis Pair Meets Polyhedral Oligomeric Silsesquioxane: Water-Tolerant Hybrid Porous Networks for Robust, Efficient, and Recyclable CO2 Catalysis
Nan Yang, Yixin Wang, Shiqing Huang, Xiaoyu Yan, Qiang Yan
{"title":"Frustrated Lewis Pair Meets Polyhedral Oligomeric Silsesquioxane: Water-Tolerant Hybrid Porous Networks for Robust, Efficient, and Recyclable CO2 Catalysis","authors":"Nan Yang, Yixin Wang, Shiqing Huang, Xiaoyu Yan, Qiang Yan","doi":"10.1021/acsami.4c20670","DOIUrl":null,"url":null,"abstract":"Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form <i>in situ</i> water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates. The excellent resistance to water derives from the synergy of superhydrophobicity of silsesquioxane cage and the multiscale micro/nano-structural effect of formed porous networks. Using CO<sub>2</sub> as a C1 feedstock, the FLP-POSS hybrid materials allow for the catalytically conversion of a variety of diamine substrates into the medicinal benzimidazole derivatives. Not only can the FLP units be immobilized on the networks meeting the needs of recyclable utilization but, more importantly, the materials are also of high catalytic efficiency and capable of working at near ambient CO<sub>2</sub> condition owing to their favorable CO<sub>2</sub> selectivity. Given that this organic/inorganic hybrid FLP catalyst features low cost, ease of synthesis, and little requirements on internal structural ordering, it will pave the way for large-scale preparation of amorphous heterogeneous FLP materials toward low-cost, robust, and sustainable C1 conversion.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"58 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20670","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form in situ water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates. The excellent resistance to water derives from the synergy of superhydrophobicity of silsesquioxane cage and the multiscale micro/nano-structural effect of formed porous networks. Using CO2 as a C1 feedstock, the FLP-POSS hybrid materials allow for the catalytically conversion of a variety of diamine substrates into the medicinal benzimidazole derivatives. Not only can the FLP units be immobilized on the networks meeting the needs of recyclable utilization but, more importantly, the materials are also of high catalytic efficiency and capable of working at near ambient CO2 condition owing to their favorable CO2 selectivity. Given that this organic/inorganic hybrid FLP catalyst features low cost, ease of synthesis, and little requirements on internal structural ordering, it will pave the way for large-scale preparation of amorphous heterogeneous FLP materials toward low-cost, robust, and sustainable C1 conversion.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.