{"title":"Fluoride Ion Passivation of CsPbBr3 Nanocrystals at Room Temperature for Highly Efficient and Stable White Light-Emitting Diodes","authors":"Wenqiang Liu, Zitong Qi, Tuanning Liu, Yang Zhang","doi":"10.1021/acsami.5c01999","DOIUrl":null,"url":null,"abstract":"Inorganic halide perovskite nanocrystals (NCs) are regarded as promising emitters for light-emitting diodes due to their bright and narrow emission. However, surface defects often result in trap states and ion migration, which remains a huge challenge for high-quality perovskite NCs. Herein, fluoride ions are introduced into CsPbBr<sub>3</sub> perovskite NCs at room temperature through the chelation of ligands. Experimental results demonstrate that these fluoride ions from inorganic salts can improve the average lifetime and crystallinity of CsPbBr<sub>3</sub> NCs. Meanwhile, the resulting photoluminescence quantum yield is optimized up to 99.02%, and it has high stability to water, heat, and ultraviolet light. Density functional theory calculations show that fluoride ions have a higher binding energy compared to other ligands, which not only removes the electron trapping center but also increases the halogen ion migration energy. By mixing green-emission CsPbBr<sub>3</sub> NCs and red-emission K<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup> phosphors on a blue chip, the fabricated white light emitting diode shows a high luminous efficiency of 147.8 lm/W, a wide color gamut (129% for NTSC), and CIE coordinates of (0.3160, 0.3051). Furthermore, the photoluminescence intensity decreased by only 2.9% after 48 h of continuous operation.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"36 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01999","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic halide perovskite nanocrystals (NCs) are regarded as promising emitters for light-emitting diodes due to their bright and narrow emission. However, surface defects often result in trap states and ion migration, which remains a huge challenge for high-quality perovskite NCs. Herein, fluoride ions are introduced into CsPbBr3 perovskite NCs at room temperature through the chelation of ligands. Experimental results demonstrate that these fluoride ions from inorganic salts can improve the average lifetime and crystallinity of CsPbBr3 NCs. Meanwhile, the resulting photoluminescence quantum yield is optimized up to 99.02%, and it has high stability to water, heat, and ultraviolet light. Density functional theory calculations show that fluoride ions have a higher binding energy compared to other ligands, which not only removes the electron trapping center but also increases the halogen ion migration energy. By mixing green-emission CsPbBr3 NCs and red-emission K2SiF6:Mn4+ phosphors on a blue chip, the fabricated white light emitting diode shows a high luminous efficiency of 147.8 lm/W, a wide color gamut (129% for NTSC), and CIE coordinates of (0.3160, 0.3051). Furthermore, the photoluminescence intensity decreased by only 2.9% after 48 h of continuous operation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.