J. Oller-Iscar, Andrés R. Tejedor, Marisol Ripoll, Jorge Ramírez
{"title":"Computational study of active polar polymer melts: From active reptation to activity induced local alignment","authors":"J. Oller-Iscar, Andrés R. Tejedor, Marisol Ripoll, Jorge Ramírez","doi":"10.1016/j.polymer.2025.128074","DOIUrl":null,"url":null,"abstract":"This work investigates the effects of tangent polar activity on the conformational and dynamic properties of entangled polymer melts through Langevin molecular dynamics simulations. We examine systems composed of all self-propelled, monodisperse linear chains, so that constraint release is considered. The range of activities explored here includes values where the active reptation theory is applicable, as well as higher activities that challenge the validity of the theory. Chain conformations exhibit a moderate increase in coil size increase, which becomes more pronounced at higher activity levels. Under these conditions, a local bond alignment along the chain contour appears together with a non-homogeneous segmental stretching, and orientation and stretching of the tube. Dynamically, polar activity induces a molecular-weight-independent diffusion coefficient, a transient superdiffusive behavior, and an end-to-end relaxation time inversely proportional to the molecular weight. Finally, our results are summarized in a diagram that classifies the various regimes of behavior observed in the simulations. Overall, these findings provide valuable insights into the complex interplay between activity and entanglements, advancing our understanding of active polymer systems and their potential applications across various fields.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"58 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128074","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates the effects of tangent polar activity on the conformational and dynamic properties of entangled polymer melts through Langevin molecular dynamics simulations. We examine systems composed of all self-propelled, monodisperse linear chains, so that constraint release is considered. The range of activities explored here includes values where the active reptation theory is applicable, as well as higher activities that challenge the validity of the theory. Chain conformations exhibit a moderate increase in coil size increase, which becomes more pronounced at higher activity levels. Under these conditions, a local bond alignment along the chain contour appears together with a non-homogeneous segmental stretching, and orientation and stretching of the tube. Dynamically, polar activity induces a molecular-weight-independent diffusion coefficient, a transient superdiffusive behavior, and an end-to-end relaxation time inversely proportional to the molecular weight. Finally, our results are summarized in a diagram that classifies the various regimes of behavior observed in the simulations. Overall, these findings provide valuable insights into the complex interplay between activity and entanglements, advancing our understanding of active polymer systems and their potential applications across various fields.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.