External delay and dispersion correction of automatically sampled arterial blood with dual flow rates.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-01-24 DOI:10.1088/2057-1976/adae13
Benjamin Brender, Lubna Burki, Josefina Jeon, Alvina Ng, Nikta Z Yussefian, Carme Uribe, Emily Murrell, Isabelle Boileau, Kimberly L Desmond, Lucas Narciso
{"title":"External delay and dispersion correction of automatically sampled arterial blood with dual flow rates.","authors":"Benjamin Brender, Lubna Burki, Josefina Jeon, Alvina Ng, Nikta Z Yussefian, Carme Uribe, Emily Murrell, Isabelle Boileau, Kimberly L Desmond, Lucas Narciso","doi":"10.1088/2057-1976/adae13","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.</p><p><strong>Approach: </strong>External delay and dispersion constants were measured for the flow rates of 350, 300, 180, and 150 mL/h, using 1-minute-long rectangular inputs (n = 10; 18F-fluoride in saline). Resulting constants were used to validate the external delay and dispersion corrections (n = 6; 18F-fluoride in saline; flow rate change: 350 to 150 mL/h and 300 to 180 mL/h); constants were modelled to transition linearly between flow rates. Corrected curves were assessed using the percent area-under-the-curve (AUC) ratio and a modified model selection criterion (MSC). External delay and dispersion constants were measured for various radiotracers using a blood analog (i.e., similar viscoelastic properties).</p><p><strong>Main results: </strong>ABSS outputs were successfully corrected for external delay and dispersion using our proposed method accounting for a change in flow rate. AUC ratio reduced from ~10% for the uncorrected 350-150 mL/h output (~6% for the 300-180 mL/h) to < 1% after correction when compared to true input (511 keV energy window); approx. 5-fold increase in MSC. Assuming an internal dispersion constant of 5 seconds, the dispersion constant (internal + external) for [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1 was 13, 9, 16, and 10 s, respectively.</p><p><strong>Significance: </strong>This study presented an external delay and dispersion correction procedure needed when a change in flow rate occurs during ABSS data acquisition. Additionally, this is the first study to measure the external delay and dispersion constants using a blood analog solution, a suitable alternative to blood when estimating external dispersion.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adae13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.

Approach: External delay and dispersion constants were measured for the flow rates of 350, 300, 180, and 150 mL/h, using 1-minute-long rectangular inputs (n = 10; 18F-fluoride in saline). Resulting constants were used to validate the external delay and dispersion corrections (n = 6; 18F-fluoride in saline; flow rate change: 350 to 150 mL/h and 300 to 180 mL/h); constants were modelled to transition linearly between flow rates. Corrected curves were assessed using the percent area-under-the-curve (AUC) ratio and a modified model selection criterion (MSC). External delay and dispersion constants were measured for various radiotracers using a blood analog (i.e., similar viscoelastic properties).

Main results: ABSS outputs were successfully corrected for external delay and dispersion using our proposed method accounting for a change in flow rate. AUC ratio reduced from ~10% for the uncorrected 350-150 mL/h output (~6% for the 300-180 mL/h) to < 1% after correction when compared to true input (511 keV energy window); approx. 5-fold increase in MSC. Assuming an internal dispersion constant of 5 seconds, the dispersion constant (internal + external) for [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1 was 13, 9, 16, and 10 s, respectively.

Significance: This study presented an external delay and dispersion correction procedure needed when a change in flow rate occurs during ABSS data acquisition. Additionally, this is the first study to measure the external delay and dispersion constants using a blood analog solution, a suitable alternative to blood when estimating external dispersion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Simulations of the potential for diffraction enhanced imaging at 8 kev using polycapillary optics. Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation. External delay and dispersion correction of automatically sampled arterial blood with dual flow rates. Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1