Ashley N Hostetler, Jonathan W Reneau, Joseph Cristiano, Teclemariam Weldekidan, Taran A Kermani, Therese T Kim, Erin E Sparks
{"title":"A tool to measure maize root system stiffness that enables a comprehensive understanding of plant mechanics and lodging.","authors":"Ashley N Hostetler, Jonathan W Reneau, Joseph Cristiano, Teclemariam Weldekidan, Taran A Kermani, Therese T Kim, Erin E Sparks","doi":"10.1093/jxb/erae465","DOIUrl":null,"url":null,"abstract":"<p><p>Plant mechanical failure, known as lodging, has detrimental impacts on the quality and quantity of maize yields. Failure can occur at stalks (stalk lodging) or at roots (root lodging). While previous research has focused on proxy measures for stalk stiffness, stalk strength, and root strength, there is a need to quantify the root system stiffness, which quantifies the force-displacement relationship. Here, we report a tool to quantify the root system stiffness of maize hybrids grown in different conditions. The results show that maize hybrids with a higher root system stiffness have a greater susceptibility to root lodging. This result is consistent with expected mechanical behavior, since higher root system stiffness values mean that the plant reaches the failure strength at lower displacements compared with a plant with lower root system stiffness. Collectively, this study describes the first tool to measure root system stiffness and enables a comprehensive understanding of the integrated plant mechanics and lodging.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae465","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant mechanical failure, known as lodging, has detrimental impacts on the quality and quantity of maize yields. Failure can occur at stalks (stalk lodging) or at roots (root lodging). While previous research has focused on proxy measures for stalk stiffness, stalk strength, and root strength, there is a need to quantify the root system stiffness, which quantifies the force-displacement relationship. Here, we report a tool to quantify the root system stiffness of maize hybrids grown in different conditions. The results show that maize hybrids with a higher root system stiffness have a greater susceptibility to root lodging. This result is consistent with expected mechanical behavior, since higher root system stiffness values mean that the plant reaches the failure strength at lower displacements compared with a plant with lower root system stiffness. Collectively, this study describes the first tool to measure root system stiffness and enables a comprehensive understanding of the integrated plant mechanics and lodging.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.