Investigation of the Potency of KALA and REV Cell-Penetrating Peptides for In Vitro/In Vivo Delivery of an HPV Multiepitope DNA Construct.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Peptide Science Pub Date : 2025-03-01 DOI:10.1002/psc.70000
Haleh Feyzyab, Alireza Milani, Elnaz Agi, Mehrdad Hashemi, Azam Bolhassani
{"title":"Investigation of the Potency of KALA and REV Cell-Penetrating Peptides for In Vitro/In Vivo Delivery of an HPV Multiepitope DNA Construct.","authors":"Haleh Feyzyab, Alireza Milani, Elnaz Agi, Mehrdad Hashemi, Azam Bolhassani","doi":"10.1002/psc.70000","DOIUrl":null,"url":null,"abstract":"<p><p>Developing human papillomavirus (HPV) therapeutic DNA vaccines requires an effective delivery system, such as cell-penetrating peptides (CPPs). In the current study, the multiepitope DNA constructs harboring the immunogenic and conserved epitopes of the L1, L2, and E7 proteins of HPV16/18 (pcDNA-L1-L2-E7 and pEGFP-L1-L2-E7) were delivered using KALA and REV CPPs with different properties in vitro and in vivo. Herein, after confirmation of the REV/DNA and KALA/DNA complexes, their stability was investigated against DNase I and serum protease. Then, their entry into HEK-293T eukaryotic cells was analyzed by qualitative and quantitative methods. Finally, anti-tumor effects of the peptide/DNA complexes were investigated in the C57BL/6 mouse model. Based on the obtained data, the REV/DNA and KALA/DNA complexes at the N/P ratio of 5:1 demonstrated successful penetration into HEK-293T cells. Furthermore, in vivo studies represented that the REV/DNA (survival rate: 75%) and KALA/DNA (survival rate: 50%) complexes provided significant protection against C3 tumors in mice. Indeed, REV CPP exhibited a higher survival rate and lower tumor volume than KALA CPP, 50 days after the C3 challenge. These findings represented the potential of KALA and REV CPPs, especially REV, as promising gene delivery systems for developing HPV therapeutic DNA vaccine candidates.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":"e70000"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/psc.70000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing human papillomavirus (HPV) therapeutic DNA vaccines requires an effective delivery system, such as cell-penetrating peptides (CPPs). In the current study, the multiepitope DNA constructs harboring the immunogenic and conserved epitopes of the L1, L2, and E7 proteins of HPV16/18 (pcDNA-L1-L2-E7 and pEGFP-L1-L2-E7) were delivered using KALA and REV CPPs with different properties in vitro and in vivo. Herein, after confirmation of the REV/DNA and KALA/DNA complexes, their stability was investigated against DNase I and serum protease. Then, their entry into HEK-293T eukaryotic cells was analyzed by qualitative and quantitative methods. Finally, anti-tumor effects of the peptide/DNA complexes were investigated in the C57BL/6 mouse model. Based on the obtained data, the REV/DNA and KALA/DNA complexes at the N/P ratio of 5:1 demonstrated successful penetration into HEK-293T cells. Furthermore, in vivo studies represented that the REV/DNA (survival rate: 75%) and KALA/DNA (survival rate: 50%) complexes provided significant protection against C3 tumors in mice. Indeed, REV CPP exhibited a higher survival rate and lower tumor volume than KALA CPP, 50 days after the C3 challenge. These findings represented the potential of KALA and REV CPPs, especially REV, as promising gene delivery systems for developing HPV therapeutic DNA vaccine candidates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
期刊最新文献
A Novel Insect Short Neuropeptide sNPF Peptidomimetic Insecticide: Rational Design, Synthesis, and Aphicidal Activity Study. Investigation of the Potency of KALA and REV Cell-Penetrating Peptides for In Vitro/In Vivo Delivery of an HPV Multiepitope DNA Construct. The Prototypical Oligopeptide Transporter YdgR From E. coli Exhibits a Strict Preference for β-Ala-Lys(AMCA). The Potential Effect of Endogenous Antimicrobial Peptides in Cancer Immunotherapy and Prevention. Crystallographic Analysis of Short Helical Peptides Containing Homologs of Phenylalanine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1