Chaitanya Duvvuri, Manmohan Singh, Gongpu Lan, Salavat R Aglyamov, Kirill V Larin, Michael D Twa
{"title":"Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography.","authors":"Chaitanya Duvvuri, Manmohan Singh, Gongpu Lan, Salavat R Aglyamov, Kirill V Larin, Michael D Twa","doi":"10.1167/tvst.14.1.26","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.</p><p><strong>Methods: </strong>Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation. The effects of stimulation angle and sample geometry on the dispersion were evaluated in corneal phantoms. Corneal wave speed dispersion was measured in 36 healthy human eyes in vivo.</p><p><strong>Results: </strong>Air-pulse-induced dispersion was comparable to ultrasound-induced dispersion between 0.7 and 5 kHz (mean-difference ± 1.96 × SD: 0.006 ± 0.5 m/s) in ex vivo rabbit corneas. Stimulation 0° relative to the surface normal generated A0 Lamb waves in corneal tissue phantoms, while oblique stimulation (35° and 65°) generated S0 waves. Stimulating normal to the human corneal apex in vivo (0°) induced A0 waves, plateauing at 10.87 to 13.63 m/s at 4 kHz, and when obliquely stimulated at the periphery (65°), produced S0 waves, plateauing at 13.10 to 15.98 m/s at 4 kHz.</p><p><strong>Conclusions: </strong>Air-pulse OCE can be used to measure human corneal Lamb wave dispersion of A0 and S0 propagation modes in vivo. These modes are selectively excited by changing the stimulation angle. Accounting for wave speed dispersion enables reliable estimation of corneal elastic modulus in vivo.</p><p><strong>Translational relevance: </strong>This work demonstrates the feasibility of air-pulse stimulation for robust OCE measurements of corneal stiffness in vivo for disease detection and therapy evaluation.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 1","pages":"26"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.1.26","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.
Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation. The effects of stimulation angle and sample geometry on the dispersion were evaluated in corneal phantoms. Corneal wave speed dispersion was measured in 36 healthy human eyes in vivo.
Results: Air-pulse-induced dispersion was comparable to ultrasound-induced dispersion between 0.7 and 5 kHz (mean-difference ± 1.96 × SD: 0.006 ± 0.5 m/s) in ex vivo rabbit corneas. Stimulation 0° relative to the surface normal generated A0 Lamb waves in corneal tissue phantoms, while oblique stimulation (35° and 65°) generated S0 waves. Stimulating normal to the human corneal apex in vivo (0°) induced A0 waves, plateauing at 10.87 to 13.63 m/s at 4 kHz, and when obliquely stimulated at the periphery (65°), produced S0 waves, plateauing at 13.10 to 15.98 m/s at 4 kHz.
Conclusions: Air-pulse OCE can be used to measure human corneal Lamb wave dispersion of A0 and S0 propagation modes in vivo. These modes are selectively excited by changing the stimulation angle. Accounting for wave speed dispersion enables reliable estimation of corneal elastic modulus in vivo.
Translational relevance: This work demonstrates the feasibility of air-pulse stimulation for robust OCE measurements of corneal stiffness in vivo for disease detection and therapy evaluation.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.