{"title":"Advances in OCT Angiography.","authors":"Tristan T Hormel, David Huang, Yali Jia","doi":"10.1167/tvst.14.3.6","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography angiography (OCTA) is a signal processing and scan acquisition approach that enables OCT devices to clearly identify vascular tissue down to the capillary scale. As originally proposed, OCTA included several important limitations, including small fields of view relative to allied imaging modalities and the presence of confounding artifacts. New approaches, including both hardware and software, are solving these problems and can now produce high-quality angiograms from tissue throughout the retina and choroid. Image analysis tools have also improved, enabling OCTA data to be quantified at high precision and used to diagnose disease using deep learning models. This review highlights these advances and trends in OCTA technology, focusing on work produced since 2020.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 3","pages":"6"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.3.6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical coherence tomography angiography (OCTA) is a signal processing and scan acquisition approach that enables OCT devices to clearly identify vascular tissue down to the capillary scale. As originally proposed, OCTA included several important limitations, including small fields of view relative to allied imaging modalities and the presence of confounding artifacts. New approaches, including both hardware and software, are solving these problems and can now produce high-quality angiograms from tissue throughout the retina and choroid. Image analysis tools have also improved, enabling OCTA data to be quantified at high precision and used to diagnose disease using deep learning models. This review highlights these advances and trends in OCTA technology, focusing on work produced since 2020.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.