Gang Xue, Ruiping Zhang, Yihao Chen, Wei Xu, Changxing Zhang
{"title":"Glucose Sensor Design Based on Monte Carlo Simulation.","authors":"Gang Xue, Ruiping Zhang, Yihao Chen, Wei Xu, Changxing Zhang","doi":"10.3390/bios15010017","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous glucose monitoring based on the minimally invasive implantation of glucose sensor is characterized by high accuracy and good stability. At present, glucose concentration monitoring based on fluorescent glucose capsule sensor is a new development trend. In this paper, we design a fluorescent glucose capsule sensor with a design optimization study. The motion trajectory of incident light in the fluorescent gel layer is simulated based on the Monte Carlo method, and the cloud maps of light intensity with the light intensity distribution at the light-receiving layer are plotted. Altering the density of fluorescent molecules, varying the thickness of tissue layers, and adjusting the angle of incidence deflection, the study investigates the influence of these parameter changes on the optimal position of reflected light at the bottom. Finally, the simulation results were utilized to design and fabricate a fluorescent glucose capsule sensor. Rabbit subcutaneous tissue glucose level tests and real-time glucose solution concentration monitoring experiments were performed. This work contributes to the real-time monitoring of glucose levels and opens up new avenues for research on fabricating glucose sensors.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous glucose monitoring based on the minimally invasive implantation of glucose sensor is characterized by high accuracy and good stability. At present, glucose concentration monitoring based on fluorescent glucose capsule sensor is a new development trend. In this paper, we design a fluorescent glucose capsule sensor with a design optimization study. The motion trajectory of incident light in the fluorescent gel layer is simulated based on the Monte Carlo method, and the cloud maps of light intensity with the light intensity distribution at the light-receiving layer are plotted. Altering the density of fluorescent molecules, varying the thickness of tissue layers, and adjusting the angle of incidence deflection, the study investigates the influence of these parameter changes on the optimal position of reflected light at the bottom. Finally, the simulation results were utilized to design and fabricate a fluorescent glucose capsule sensor. Rabbit subcutaneous tissue glucose level tests and real-time glucose solution concentration monitoring experiments were performed. This work contributes to the real-time monitoring of glucose levels and opens up new avenues for research on fabricating glucose sensors.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.