{"title":"A Novel Aggregation-Induced Emission-Based Electrochemiluminescence Aptamer Sensor Utilizing Red-Emissive Sulfur Quantum Dots for Rapid and Sensitive Malathion Detection.","authors":"Yajun Wu, Dongxiao Ma, Xiaoli Zhu, Fangquan Xia","doi":"10.3390/bios15010064","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties. These SQDs were modified onto the electrode surface to serve as ECL luminophores. Subsequently, Apt was introduced and modified to form a double-helix structure with the complementary chain (cDNA). The ECL signal was reduced because the biomolecules had poor electrical conductivity and inefficient electron transfer. When the target malathion was added, the double helix structure was unraveled, the malathion Apt fell off the electrode surface, and the ECL signal was restored. The linear range of detection was 1.0 × 10<sup>-13</sup>-1.0 × 10<sup>-8</sup> mol·L<sup>-1</sup>, and the detection limit was 0.219 fM. The successful preparation of the sensor not only develops the ECL optical properties of SQDs but also expands the application of SQDs in ECL sensing.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010064","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties. These SQDs were modified onto the electrode surface to serve as ECL luminophores. Subsequently, Apt was introduced and modified to form a double-helix structure with the complementary chain (cDNA). The ECL signal was reduced because the biomolecules had poor electrical conductivity and inefficient electron transfer. When the target malathion was added, the double helix structure was unraveled, the malathion Apt fell off the electrode surface, and the ECL signal was restored. The linear range of detection was 1.0 × 10-13-1.0 × 10-8 mol·L-1, and the detection limit was 0.219 fM. The successful preparation of the sensor not only develops the ECL optical properties of SQDs but also expands the application of SQDs in ECL sensing.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.