Izabela Zaras, Olga Kujawa, Marcin Olszewski, Marta Jarczewska
{"title":"Application of PS2M Aptamer as Receptor Layer for Electrochemical Detection of Lead Ions.","authors":"Izabela Zaras, Olga Kujawa, Marcin Olszewski, Marta Jarczewska","doi":"10.3390/bios15010059","DOIUrl":null,"url":null,"abstract":"<p><p>Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose. Herein, we present studies on the electrochemical detection of lead ions using PS2M aptamer, which contains several guanine nucleotides, as the receptor element. Firstly, the method of aptamer-based layer fabrication was optimized along with the choice of a redox active indicator, which was a source of current signal. The experiments revealed the possibility of lead ion detection from 50 to 600 nM, which covers the range below and above the maximum accepted limit stated by US EPA (72 nM). Moreover, the sensing layer exhibited high selectivity towards lead ions and was successfully applied both for the analysis of tap water spiked with Pb<sup>2+</sup> ions and as a miniaturized sensor. Finally, stability and regeneration studies on the aptamer-based receptor layer were executed to confirm the utility of the elaborated tool.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose. Herein, we present studies on the electrochemical detection of lead ions using PS2M aptamer, which contains several guanine nucleotides, as the receptor element. Firstly, the method of aptamer-based layer fabrication was optimized along with the choice of a redox active indicator, which was a source of current signal. The experiments revealed the possibility of lead ion detection from 50 to 600 nM, which covers the range below and above the maximum accepted limit stated by US EPA (72 nM). Moreover, the sensing layer exhibited high selectivity towards lead ions and was successfully applied both for the analysis of tap water spiked with Pb2+ ions and as a miniaturized sensor. Finally, stability and regeneration studies on the aptamer-based receptor layer were executed to confirm the utility of the elaborated tool.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.