Sen Yang, Yanxiong Wang, Yanfeng Jiang, Tian Qiang
{"title":"An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution.","authors":"Sen Yang, Yanxiong Wang, Yanfeng Jiang, Tian Qiang","doi":"10.3390/bios15010045","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and <i>Escherichia coli</i> (<i>E. coli</i>) in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and <i>E. coli</i>. The results demonstrate that microfluidics could effectively enrich WBCs with an efficiency of 88.3%. For WBC detection, the resonance frequency of the sensing chip decreases with increasing concentration, while for <i>E. coli</i> detection, the capacitance value of the sensing chip increases with elevated concentration. Furthermore, the measurement data are processed using machine learning. Specifically, the WBC measurement data are subjected to a further linear fitting. In addition, the prediction model for <i>E. coli</i> concentration, employing four different algorithms, achieves a maximum accuracy of 95.24%. Consequently, the proposed integrated chip can be employed for the clinical diagnosis of WBCs and <i>E. coli</i>, providing a novel approach for medical and biological research involving cells and bacteria.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010045","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and Escherichia coli (E. coli) in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and E. coli. The results demonstrate that microfluidics could effectively enrich WBCs with an efficiency of 88.3%. For WBC detection, the resonance frequency of the sensing chip decreases with increasing concentration, while for E. coli detection, the capacitance value of the sensing chip increases with elevated concentration. Furthermore, the measurement data are processed using machine learning. Specifically, the WBC measurement data are subjected to a further linear fitting. In addition, the prediction model for E. coli concentration, employing four different algorithms, achieves a maximum accuracy of 95.24%. Consequently, the proposed integrated chip can be employed for the clinical diagnosis of WBCs and E. coli, providing a novel approach for medical and biological research involving cells and bacteria.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.