{"title":"Rapid Acquisition of High-Pixel Fluorescence Lifetime Images of Living Cells via Image Reconstruction Based on Edge-Preserving Interpolation.","authors":"Yinru Zhu, Yong Guo, Xinwei Gao, Qinglin Chen, Yingying Chen, Ruijie Xiang, Baichang Lin, Luwei Wang, Yuan Lu, Wei Yan","doi":"10.3390/bios15010043","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times. Specifically, we decouple the grayscale image and the fluorescence lifetime matrix and perform an individual interpolation on each. Following the interpolation of the intensity image, we apply wavelet transformation and adjust the wavelet coefficients according to the image gradients. After the inverse transformation, the original image is obtained and subjected to noise reduction to complete the image reconstruction process. Subsequently, each pixel is pseudo-color-coded based on its intensity and lifetime, preserving both structural and temporal information. We evaluated the performance of the bicubic interpolation method and our image reconstruction approach on fluorescence microspheres and fixed-cell samples, demonstrating their effectiveness in enhancing the quality of lifetime images. By applying these techniques to live-cell imaging, we can successfully obtain high-pixel FLIM images at shortened intervals, facilitating the capture of rapid cellular events.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010043","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times. Specifically, we decouple the grayscale image and the fluorescence lifetime matrix and perform an individual interpolation on each. Following the interpolation of the intensity image, we apply wavelet transformation and adjust the wavelet coefficients according to the image gradients. After the inverse transformation, the original image is obtained and subjected to noise reduction to complete the image reconstruction process. Subsequently, each pixel is pseudo-color-coded based on its intensity and lifetime, preserving both structural and temporal information. We evaluated the performance of the bicubic interpolation method and our image reconstruction approach on fluorescence microspheres and fixed-cell samples, demonstrating their effectiveness in enhancing the quality of lifetime images. By applying these techniques to live-cell imaging, we can successfully obtain high-pixel FLIM images at shortened intervals, facilitating the capture of rapid cellular events.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.