Machine Learning and Multi-Omics Integration to Reveal Biomarkers and Microbial Community Assembly Differences in Abnormal Stacking Fermentation of Sauce-Flavor Baijiu.
{"title":"Machine Learning and Multi-Omics Integration to Reveal Biomarkers and Microbial Community Assembly Differences in Abnormal Stacking Fermentation of Sauce-Flavor <i>Baijiu</i>.","authors":"Shuai Li, Yueran Han, Ming Yan, Shuyi Qiu, Jun Lu","doi":"10.3390/foods14020245","DOIUrl":null,"url":null,"abstract":"<p><p>Stacking fermentation is critical in sauce-flavor <i>Baijiu</i> production, but winter production often sees abnormal fermentations, like Waistline and Sub-Temp fermentation, affecting yield and quality. This study used three machine learning models (Logistic Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with 9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers. <i>Komagataeibacter</i> and <i>Gluconacetobacter</i> are key for normal fermentation, while <i>Ligilactobacillus</i> and <i>Lactobacillus</i> are critical in abnormal cases. Excessive acid and ester markers caused unbalanced aromas in abnormal fermentations. Additionally, ecological models reveal the bacterial community assembly in abnormal fermentations was influenced by stochastic factors, while the fungal community assembly was influenced by deterministic factors. RDA analysis shows that moisture significantly drove Sub-Temp fermentation. Differential gene analysis and KEGG pathway enrichment identify metabolic pathways for flavor markers. This study provides a theoretical basis for regulating stacking fermentation and ensuring <i>Baijiu</i> quality.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14020245","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stacking fermentation is critical in sauce-flavor Baijiu production, but winter production often sees abnormal fermentations, like Waistline and Sub-Temp fermentation, affecting yield and quality. This study used three machine learning models (Logistic Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with 9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers. Komagataeibacter and Gluconacetobacter are key for normal fermentation, while Ligilactobacillus and Lactobacillus are critical in abnormal cases. Excessive acid and ester markers caused unbalanced aromas in abnormal fermentations. Additionally, ecological models reveal the bacterial community assembly in abnormal fermentations was influenced by stochastic factors, while the fungal community assembly was influenced by deterministic factors. RDA analysis shows that moisture significantly drove Sub-Temp fermentation. Differential gene analysis and KEGG pathway enrichment identify metabolic pathways for flavor markers. This study provides a theoretical basis for regulating stacking fermentation and ensuring Baijiu quality.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds