{"title":"Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides.","authors":"Kaitao Peng, Yujie Zhang, Qi Zhang, Yunpu Wang, Yuhuan Liu, Xian Cui","doi":"10.3390/foods14020246","DOIUrl":null,"url":null,"abstract":"<p><p>In order to overcome the bioavailability limitation of <i>Lilium</i> polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS. <i>In vitro</i> fermentation experiments revealed that LPS and its derivatives exerted different prebiotic effects on intestinal microbial communities. Specifically, LPS mainly inhibited the growth of harmful bacteria such as Fusobacterium, while G-LPS(8) and G-LPS(16) tended to promote the growth of beneficial bacteria like <i>Megamonas</i>, <i>Bacteroides</i>, and <i>Parabacteroides</i>. Metabolomic analysis revealed that LPSs with varying molecular weights exerted comparable promoting effects on multiple amino acid and carbohydrate metabolic pathways. Importantly, with the reduction in molecular weight, G-LPS(16) also particularly stimulated sphingolipid metabolism, nucleotide metabolism, as well as ascorbic acid and uronic acid metabolism, leading to the significant increase in specific metabolites such as sphingosine. Therefore, this study suggests that properly degraded LPS components have greater potential as a prebiotic for improving gut health.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14020246","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to overcome the bioavailability limitation of Lilium polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS. In vitro fermentation experiments revealed that LPS and its derivatives exerted different prebiotic effects on intestinal microbial communities. Specifically, LPS mainly inhibited the growth of harmful bacteria such as Fusobacterium, while G-LPS(8) and G-LPS(16) tended to promote the growth of beneficial bacteria like Megamonas, Bacteroides, and Parabacteroides. Metabolomic analysis revealed that LPSs with varying molecular weights exerted comparable promoting effects on multiple amino acid and carbohydrate metabolic pathways. Importantly, with the reduction in molecular weight, G-LPS(16) also particularly stimulated sphingolipid metabolism, nucleotide metabolism, as well as ascorbic acid and uronic acid metabolism, leading to the significant increase in specific metabolites such as sphingosine. Therefore, this study suggests that properly degraded LPS components have greater potential as a prebiotic for improving gut health.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds