Self-organization from organs to embryoids by activin in early amphibian development.

IF 2.1 4区 生物学 Q3 DEVELOPMENTAL BIOLOGY Cells & Development Pub Date : 2025-01-23 DOI:10.1016/j.cdev.2025.203996
Makoto Asashima, Yumeko Satou-Kobayashi, Yoshikazu Haramoto, Takashi Ariizumi
{"title":"Self-organization from organs to embryoids by activin in early amphibian development.","authors":"Makoto Asashima, Yumeko Satou-Kobayashi, Yoshikazu Haramoto, Takashi Ariizumi","doi":"10.1016/j.cdev.2025.203996","DOIUrl":null,"url":null,"abstract":"<p><p>Embryonic development is a complex self-organizing process orchestrated by a series of regulatory events at the molecular and cellular levels, resulting in the formation of a fully functional organism. This review focuses on activin protein as a mesoderm-inducing factor and the self-organizing properties it confers. Activin has been detected in both unfertilized eggs and embryos, suggesting its involvement in early developmental processes. To explore its effects, animal cap cells-pluripotent cells from the animal pole of amphibian blastula-stage embryos-were treated with varying concentrations of activin. The results showed that activin induced mesodermal tissues, including blood, muscle, and notochord, in a dose-dependent manner. Co-treatment with activin and retinoic acid further promoted the development of kidney and pancreatic tissues, while activin alone stimulated the formation of beating cardiac tissue. In subsequent experiments, high concentrations of activin conferred an organizer-like activity on animal cap cells. The pretreatment duration affected outcomes: longer exposure induced anterior structures, such as eyes, while shorter exposure resulted in posterior structures, like tails. These findings reflect moderate self-assembly, where cells become increasingly organized. In another experiment, activin was used to create an artificial gradient. Explants cultured on this gradient developed into embryoids with well-defined anteroposterior, dorsoventral, and left-right axes, exemplifying higher-order self-organization. These results demonstrate that controlled activin gradients can drive the formation of nearly complete tadpole-like larvae, effectively recapitulating the processes of early embryogenesis. This system offers valuable insights into the mechanisms underlying axis formation and organogenesis, providing a promising platform for future research in developmental biology.</p>","PeriodicalId":29860,"journal":{"name":"Cells & Development","volume":" ","pages":"203996"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells & Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cdev.2025.203996","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Embryonic development is a complex self-organizing process orchestrated by a series of regulatory events at the molecular and cellular levels, resulting in the formation of a fully functional organism. This review focuses on activin protein as a mesoderm-inducing factor and the self-organizing properties it confers. Activin has been detected in both unfertilized eggs and embryos, suggesting its involvement in early developmental processes. To explore its effects, animal cap cells-pluripotent cells from the animal pole of amphibian blastula-stage embryos-were treated with varying concentrations of activin. The results showed that activin induced mesodermal tissues, including blood, muscle, and notochord, in a dose-dependent manner. Co-treatment with activin and retinoic acid further promoted the development of kidney and pancreatic tissues, while activin alone stimulated the formation of beating cardiac tissue. In subsequent experiments, high concentrations of activin conferred an organizer-like activity on animal cap cells. The pretreatment duration affected outcomes: longer exposure induced anterior structures, such as eyes, while shorter exposure resulted in posterior structures, like tails. These findings reflect moderate self-assembly, where cells become increasingly organized. In another experiment, activin was used to create an artificial gradient. Explants cultured on this gradient developed into embryoids with well-defined anteroposterior, dorsoventral, and left-right axes, exemplifying higher-order self-organization. These results demonstrate that controlled activin gradients can drive the formation of nearly complete tadpole-like larvae, effectively recapitulating the processes of early embryogenesis. This system offers valuable insights into the mechanisms underlying axis formation and organogenesis, providing a promising platform for future research in developmental biology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells & Development
Cells & Development DEVELOPMENTAL BIOLOGY-
CiteScore
3.70
自引率
0.00%
发文量
33
期刊最新文献
A tale of two tissues: Patterning of the epidermis through morphogens and their role in establishing tracheal system organization. Functional attributes of the anterior mesendoderm in patterning the anterior neural structures during head formation in the mouse. fos genes in mainly invertebrate model systems: A review of commonalities and some diversities. Dynamic behavior of cell-cell adhesion factors in collective cell migration. Self-organization from organs to embryoids by activin in early amphibian development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1