Biomimetic Air-Lifted Organ Culture System with a Protective Coverage Membrane for Full-Thickness Corneal Preservation.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-02-10 Epub Date: 2025-01-27 DOI:10.1021/acsbiomaterials.4c02475
Le Ma, Hongliang Jiang, Huan Wang, Ling Peng, Guoying Sun, Qiongyu Guo
{"title":"Biomimetic Air-Lifted Organ Culture System with a Protective Coverage Membrane for Full-Thickness Corneal Preservation.","authors":"Le Ma, Hongliang Jiang, Huan Wang, Ling Peng, Guoying Sun, Qiongyu Guo","doi":"10.1021/acsbiomaterials.4c02475","DOIUrl":null,"url":null,"abstract":"<p><p>Effective storage and utilization of limited donor corneal resources are in high demand to alleviate the shortage of donor corneal tissue. Here, we designed a static air-lifted organ culture system equipped with a protective coverage membrane, namely, an air-lifted OC-P system, to provide a biomimetic physiological environment for full-thickness corneal preservation. The air-lifted OC-P system features a unique collagen-based protective coverage membrane that can offer a moist, oxygen-rich environment for corneal epithelium, produce an appropriate intraocular pressure onto the cornea by gravity, and facilitate the maintenance of the organ culture medium level for nutrient supply during corneal preservation. Compared with conventional submerged and air-lifted corneal preservation methods, the air-lifted OC-P system remarkably improved the overall quality of the preserved corneas. These preserved corneas not only exhibited superior controllability of corneal swelling and extraordinary maintenance of the morphology and viability of all three types of corneal cells (i.e., corneal epithelium, keratocytes, and endothelium) but also demonstrated optimal optical, thermal, and mechanical properties. This air-lifted OC-P system presents a biomimetic strategy that provides a static and efficient method to replicate the corneal natural conditions for corneal preservation effectively.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1140-1149"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02475","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective storage and utilization of limited donor corneal resources are in high demand to alleviate the shortage of donor corneal tissue. Here, we designed a static air-lifted organ culture system equipped with a protective coverage membrane, namely, an air-lifted OC-P system, to provide a biomimetic physiological environment for full-thickness corneal preservation. The air-lifted OC-P system features a unique collagen-based protective coverage membrane that can offer a moist, oxygen-rich environment for corneal epithelium, produce an appropriate intraocular pressure onto the cornea by gravity, and facilitate the maintenance of the organ culture medium level for nutrient supply during corneal preservation. Compared with conventional submerged and air-lifted corneal preservation methods, the air-lifted OC-P system remarkably improved the overall quality of the preserved corneas. These preserved corneas not only exhibited superior controllability of corneal swelling and extraordinary maintenance of the morphology and viability of all three types of corneal cells (i.e., corneal epithelium, keratocytes, and endothelium) but also demonstrated optimal optical, thermal, and mechanical properties. This air-lifted OC-P system presents a biomimetic strategy that provides a static and efficient method to replicate the corneal natural conditions for corneal preservation effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Triton X-100
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
The Effect of the Loading-Unloading Cycles on the Tensile Behavior and Structures of Spider Tubular Gland Silk. Yeast Cell Wall-Mediated Ileal Targeted Delivery System for IgA Nepharopathy Therapy. Electrospun Nanofiber Membrane with Sustained Release of Mogroside V Enhances Alveolar Bone Defect Repair in Diabetic Rats. Construction of a 3D Degradable PLLA/β-TCP/CS Scaffold for Establishing an Induced Membrane Inspired by the Modified Single-Stage Masquelet Technique. Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1