{"title":"Major advances in protein function assignment by remote homolog detection with protein language models - A review.","authors":"Mesih Kilinc, Kejue Jia, Robert L Jernigan","doi":"10.1016/j.sbi.2025.102984","DOIUrl":null,"url":null,"abstract":"<p><p>There is an ever-increasing need for accurate and efficient methods to identify protein homologs. Traditionally, sequence similarity-based methods have dominated protein homolog identification for function identification, but these struggle when the sequence identity between the pairs is low. Recently, transformer architecture-based deep learning methods have achieved breakthrough performances in many fields. One type of model that uses transformer architecture is the protein language model (pLM). Here, we describe methods that use pLMs for protein homolog identification intended for function identification and describe their strengths and weaknesses. Several important ideas emerge, such as filtering the substitution matrix generated from embeddings, selecting specific pLM layers for specific purposes, compressing the embeddings, and dividing proteins into domains before searching for homologs that improve remote homolog detection accuracy considerably. All of these approaches produce huge numbers of new homologs that can reliably extend the reach of protein relationships for a deeper understanding of evolution and many other problems.</p>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"102984"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.sbi.2025.102984","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is an ever-increasing need for accurate and efficient methods to identify protein homologs. Traditionally, sequence similarity-based methods have dominated protein homolog identification for function identification, but these struggle when the sequence identity between the pairs is low. Recently, transformer architecture-based deep learning methods have achieved breakthrough performances in many fields. One type of model that uses transformer architecture is the protein language model (pLM). Here, we describe methods that use pLMs for protein homolog identification intended for function identification and describe their strengths and weaknesses. Several important ideas emerge, such as filtering the substitution matrix generated from embeddings, selecting specific pLM layers for specific purposes, compressing the embeddings, and dividing proteins into domains before searching for homologs that improve remote homolog detection accuracy considerably. All of these approaches produce huge numbers of new homologs that can reliably extend the reach of protein relationships for a deeper understanding of evolution and many other problems.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation