Modeling dosimetric benefits from daily adaptive RT for gynecological cancer patients with and without knowledge-based dose prediction.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Applied Clinical Medical Physics Pub Date : 2025-01-27 DOI:10.1002/acm2.14596
Rupesh Ghimire, Lance Moore, Daniela Branco, Dominique L Rash, Jyoti S Mayadev, Xenia Ray
{"title":"Modeling dosimetric benefits from daily adaptive RT for gynecological cancer patients with and without knowledge-based dose prediction.","authors":"Rupesh Ghimire, Lance Moore, Daniela Branco, Dominique L Rash, Jyoti S Mayadev, Xenia Ray","doi":"10.1002/acm2.14596","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Daily online adaptive radiotherapy (ART) improves dose metrics for gynecological cancer patients, but the on-treatment process is resource-intensive requiring longer appointments and additional time from the entire adaptive team. To optimize resource allocation, we propose a model to identify high-priority patients.</p><p><strong>Methods: </strong>For 49 retrospective cervical and endometrial cancer patients, we calculated two initial plans: the treated standard-of-care (Initial<sub>SOC</sub>) and a reduced margin initial plan (Initial<sub>ART</sub>) for adapting with the Ethos treatment planning system. Daily doses corresponding to standard and reduced margins (Daily<sub>SOC</sub> and Daily<sub>ART</sub>) were determined by re-segmenting the anatomy based on the treatment CBCT and calculating dose on a synthetic CT. These initial and daily doses were used to estimate the ART benefit ( <math> <semantics><mrow><mi>Δ</mi> <mi>D</mi> <mi>a</mi> <mi>i</mi> <mi>l</mi> <mi>y</mi></mrow> <annotation>${{\\Delta}}Daily$</annotation></semantics> </math> = Daily<sub>SOC</sub>-Daily<sub>ART</sub>) versus initial plan differences ( <math> <semantics><mrow><mi>Δ</mi> <mi>I</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi></mrow> <annotation>${{\\Delta}}Initial$</annotation></semantics> </math> = Initial<sub>SOC</sub>-Initial<sub>ART</sub>) via multivariate linear regression. Dosimetric benefits were modeled with initial plan differences ( <math> <semantics><mrow><mi>Δ</mi> <mi>I</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi></mrow> <annotation>${{\\Delta}}Initial$</annotation></semantics> </math> ) of <math> <semantics><mrow><mi>B</mi> <mi>o</mi> <mi>w</mi> <mi>e</mi> <mi>l</mi> <mspace></mspace> <msub><mi>V</mi> <mrow><mn>40</mn> <mi>G</mi> <mi>y</mi></mrow> </msub> </mrow> <annotation>$Bowel\\ {{V}_{40Gy}}$</annotation></semantics> </math> (cc), <math> <semantics><mrow><mi>B</mi> <mi>l</mi> <mi>a</mi> <mi>d</mi> <mi>d</mi> <mi>e</mi> <mi>r</mi> <mspace></mspace> <msub><mi>D</mi> <mrow><mn>50</mn> <mo>%</mo></mrow> </msub> </mrow> <annotation>$Bladder\\ {{D}_{50{\\mathrm{\\% }}}}$</annotation></semantics> </math> (Gy), and <math> <semantics><mrow><mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mi>u</mi> <mi>m</mi> <mspace></mspace> <msub><mi>D</mi> <mrow><mn>50</mn> <mo>%</mo></mrow> </msub> </mrow> <annotation>$Rectum\\ {{D}_{50{\\mathrm{\\% }}}}$</annotation></semantics> </math> (Gy). Anatomy (intact uterus or post-hysterectomy), DoseType (simultaneous integrated boost [SIB] vs. single dose), and/or prescription value. To establish a logistic model, we classified the top 10% in each metric as high-benefit patients. We then built a logistic model to predict these patients from the previous predictors. Leave-one-out validation and ROC analysis were used to evaluate the accuracy. To improve the clinical efficiency of this predictive process, we also created knowledge-based plans for the ΔInitial plans ( <math> <semantics><mrow><mi>Δ</mi> <mi>I</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <msub><mi>l</mi> <mrow><mi>R</mi> <mi>P</mi></mrow> </msub> </mrow> <annotation>${{\\Delta}}Initia{{l}_{RP}}$</annotation></semantics> </math> ) and repeated the analysis.</p><p><strong>Results: </strong>In both <math> <semantics><mrow><mi>Δ</mi> <mi>I</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <msub><mi>l</mi> <mrow><mi>O</mi> <mi>r</mi> <mi>i</mi> <mi>g</mi></mrow> </msub> </mrow> <annotation>${{\\Delta}}Initia{{l}_{Orig}}$</annotation></semantics> </math> and <math> <semantics><mrow><mi>Δ</mi> <mi>I</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <msub><mi>l</mi> <mrow><mi>R</mi> <mi>P</mi></mrow> </msub> </mrow> <annotation>${{\\Delta}}Initia{{l}_{RP}}$</annotation></semantics> </math> our multivariate analysis showed low R<sup>2</sup> values 0.34-0.52 versus 0.14-0.38. The most significant predictor in each multivariate model was the corresponding ∆Initial metric (e.g., <math> <semantics><mrow><mi>Δ</mi> <mi>I</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi></mrow> <annotation>${{\\Delta}}Initial$</annotation></semantics> </math> Bowel (V40 Gy), p < 1e-05). In the logistic model, the metrics with the strongest correlation to the high-benefit patients were <math> <semantics><mrow><mi>B</mi> <mi>o</mi> <mi>w</mi> <mi>e</mi> <mi>l</mi> <mspace></mspace> <msub><mi>V</mi> <mrow><mn>40</mn> <mi>G</mi> <mi>y</mi></mrow> </msub> </mrow> <annotation>$Bowel\\ {{V}_{40Gy}}$</annotation></semantics> </math> (cc), <math> <semantics><mrow><mi>B</mi> <mi>l</mi> <mi>a</mi> <mi>d</mi> <mi>d</mi> <mi>e</mi> <mi>r</mi> <mspace></mspace> <msub><mi>D</mi> <mrow><mn>50</mn> <mo>%</mo></mrow> </msub> </mrow> <annotation>$Bladder\\ {{D}_{50{\\mathrm{\\% }}}}$</annotation></semantics> </math> (Gy), <math> <semantics><mrow><mi>D</mi> <mi>o</mi> <mi>s</mi> <mi>e</mi> <mi>T</mi> <mi>y</mi> <mi>p</mi> <mi>e</mi></mrow> <annotation>$DoseType$</annotation></semantics> </math> , and <math> <semantics><mrow><mi>S</mi> <mi>I</mi> <mi>B</mi> <mi>D</mi> <mi>o</mi> <mi>s</mi> <mi>e</mi></mrow> <annotation>$SIBDose$</annotation></semantics> </math> prescription. The models for original and knowledge-based plans had an AUC of 0.85 versus 0.78. The sensitivity and specificity were 0.92/0.72 and 0.69/0.80, respectively.</p><p><strong>Conclusion: </strong>This methodology will allow clinics to prioritize patients for resource-intensive daily online ART.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14596"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14596","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Daily online adaptive radiotherapy (ART) improves dose metrics for gynecological cancer patients, but the on-treatment process is resource-intensive requiring longer appointments and additional time from the entire adaptive team. To optimize resource allocation, we propose a model to identify high-priority patients.

Methods: For 49 retrospective cervical and endometrial cancer patients, we calculated two initial plans: the treated standard-of-care (InitialSOC) and a reduced margin initial plan (InitialART) for adapting with the Ethos treatment planning system. Daily doses corresponding to standard and reduced margins (DailySOC and DailyART) were determined by re-segmenting the anatomy based on the treatment CBCT and calculating dose on a synthetic CT. These initial and daily doses were used to estimate the ART benefit ( Δ D a i l y ${{\Delta}}Daily$ = DailySOC-DailyART) versus initial plan differences ( Δ I n i t i a l ${{\Delta}}Initial$ = InitialSOC-InitialART) via multivariate linear regression. Dosimetric benefits were modeled with initial plan differences ( Δ I n i t i a l ${{\Delta}}Initial$ ) of B o w e l V 40 G y $Bowel\ {{V}_{40Gy}}$ (cc), B l a d d e r D 50 % $Bladder\ {{D}_{50{\mathrm{\% }}}}$ (Gy), and R e c t u m D 50 % $Rectum\ {{D}_{50{\mathrm{\% }}}}$ (Gy). Anatomy (intact uterus or post-hysterectomy), DoseType (simultaneous integrated boost [SIB] vs. single dose), and/or prescription value. To establish a logistic model, we classified the top 10% in each metric as high-benefit patients. We then built a logistic model to predict these patients from the previous predictors. Leave-one-out validation and ROC analysis were used to evaluate the accuracy. To improve the clinical efficiency of this predictive process, we also created knowledge-based plans for the ΔInitial plans ( Δ I n i t i a l R P ${{\Delta}}Initia{{l}_{RP}}$ ) and repeated the analysis.

Results: In both Δ I n i t i a l O r i g ${{\Delta}}Initia{{l}_{Orig}}$ and Δ I n i t i a l R P ${{\Delta}}Initia{{l}_{RP}}$ our multivariate analysis showed low R2 values 0.34-0.52 versus 0.14-0.38. The most significant predictor in each multivariate model was the corresponding ∆Initial metric (e.g., Δ I n i t i a l ${{\Delta}}Initial$ Bowel (V40 Gy), p < 1e-05). In the logistic model, the metrics with the strongest correlation to the high-benefit patients were B o w e l V 40 G y $Bowel\ {{V}_{40Gy}}$ (cc), B l a d d e r D 50 % $Bladder\ {{D}_{50{\mathrm{\% }}}}$ (Gy), D o s e T y p e $DoseType$ , and S I B D o s e $SIBDose$ prescription. The models for original and knowledge-based plans had an AUC of 0.85 versus 0.78. The sensitivity and specificity were 0.92/0.72 and 0.69/0.80, respectively.

Conclusion: This methodology will allow clinics to prioritize patients for resource-intensive daily online ART.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
期刊最新文献
Impact of acceleration treatment on treatment plan and delivery qualities in tomotherapy for lung cancer. T2-weighted imaging of rectal cancer using a 3D fast spin echo sequence with and without deep learning reconstruction: A reader study. Dose rate correction of a diode array for universal wedge field dosimetric verification. Evaluating the use of diagnostic CT with flattening filter free beams for palliative radiotherapy: Dosimetric impact of scanner calibration variability. Evaluation of the effect of metal stents on dose perturbation in the carbon beam irradiation field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1