Dose rate correction of a diode array for universal wedge field dosimetric verification.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Applied Clinical Medical Physics Pub Date : 2025-02-19 DOI:10.1002/acm2.70050
Linyi Shen, Mengyang Li, Guiyuan Li, Xinyuan Chen, Shouping Xu, Jianrong Dai, Yuan Tian
{"title":"Dose rate correction of a diode array for universal wedge field dosimetric verification.","authors":"Linyi Shen, Mengyang Li, Guiyuan Li, Xinyuan Chen, Shouping Xu, Jianrong Dai, Yuan Tian","doi":"10.1002/acm2.70050","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To study the performance of MapCHECK 3 (MC3) in measuring universal wedge fields and propose a dose rate correction strategy to improve MC3 measurement accuracy.</p><p><strong>Materials and methods: </strong>Universal wedge fields with different wedge angles and field sizes were measured at different depths using MC3. Considering the more prominent dose rate dependence of type 4 diodes equipped by MC3, a program was developed to automatically correct the measurements based on the instantaneous dose rate (IDR) correction curve. Central axis (CAX) doses and off-axis doses along the wedge direction, with and without the correction, were compared with those measured by an ion chamber under the same condition. Measurements using MC3 with and without correction were also compared with the planned doses calculated by the treatment planning system (TPS).</p><p><strong>Results: </strong>If MC3 was used for universal wedge field measurement with the dose calibration factor (DCF) derived from a reference open field, an error of up to -2.4% would be introduced into the CAX dose. Other factors (field size and measurement depth) would also affect the accuracy of measurement when they differed from the absolute dose calibration and the maximum error was up to -2.9%. While greater errors were observed in the off-axis doses at the heel side of the wedge compared to the toe side due to the greater effective thickness of the wedge inserted into the beam. After dose rate correction, the deviations in the CAX dose were reduced to within ± 1.5%. The average gamma pass rate was also improved to over 99.5%.</p><p><strong>Conclusion: </strong>Because of the more prominent dose rate dependence of type 4 diodes, MC3 is not suitable for universal wedge field measurement using the methodology for open field measurement. The correction strategy proposed in this study is convenient and can improve the accuracy of universal wedge field measurement using MC3.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e70050"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.70050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To study the performance of MapCHECK 3 (MC3) in measuring universal wedge fields and propose a dose rate correction strategy to improve MC3 measurement accuracy.

Materials and methods: Universal wedge fields with different wedge angles and field sizes were measured at different depths using MC3. Considering the more prominent dose rate dependence of type 4 diodes equipped by MC3, a program was developed to automatically correct the measurements based on the instantaneous dose rate (IDR) correction curve. Central axis (CAX) doses and off-axis doses along the wedge direction, with and without the correction, were compared with those measured by an ion chamber under the same condition. Measurements using MC3 with and without correction were also compared with the planned doses calculated by the treatment planning system (TPS).

Results: If MC3 was used for universal wedge field measurement with the dose calibration factor (DCF) derived from a reference open field, an error of up to -2.4% would be introduced into the CAX dose. Other factors (field size and measurement depth) would also affect the accuracy of measurement when they differed from the absolute dose calibration and the maximum error was up to -2.9%. While greater errors were observed in the off-axis doses at the heel side of the wedge compared to the toe side due to the greater effective thickness of the wedge inserted into the beam. After dose rate correction, the deviations in the CAX dose were reduced to within ± 1.5%. The average gamma pass rate was also improved to over 99.5%.

Conclusion: Because of the more prominent dose rate dependence of type 4 diodes, MC3 is not suitable for universal wedge field measurement using the methodology for open field measurement. The correction strategy proposed in this study is convenient and can improve the accuracy of universal wedge field measurement using MC3.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
期刊最新文献
Impact of acceleration treatment on treatment plan and delivery qualities in tomotherapy for lung cancer. T2-weighted imaging of rectal cancer using a 3D fast spin echo sequence with and without deep learning reconstruction: A reader study. Dose rate correction of a diode array for universal wedge field dosimetric verification. Evaluating the use of diagnostic CT with flattening filter free beams for palliative radiotherapy: Dosimetric impact of scanner calibration variability. Evaluation of the effect of metal stents on dose perturbation in the carbon beam irradiation field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1