Unravelling OsPHT2;1 function in Chloroplast Phosphorus Homeostasis and Photosynthetic Efficiency under Low Phosphorus Stress in Rice.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70082
Shanshan Lu, Xiaoming Xu, Yongzhen Wu, Jun Ye, Linyan Wu, Miaomiao Nie, Shubin Sun, Wen Jing, Hui-Kyong Cho, Hatem Rouached, Luqing Zheng
{"title":"Unravelling OsPHT2;1 function in Chloroplast Phosphorus Homeostasis and Photosynthetic Efficiency under Low Phosphorus Stress in Rice.","authors":"Shanshan Lu, Xiaoming Xu, Yongzhen Wu, Jun Ye, Linyan Wu, Miaomiao Nie, Shubin Sun, Wen Jing, Hui-Kyong Cho, Hatem Rouached, Luqing Zheng","doi":"10.1111/ppl.70082","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency. Our findings show that the OsPHT2;1 mutation leads to a decrease in the plastoquinone (PQ) pool size. This change is associated with altered stomatal conductance and modifications in electron transport dynamics, including an increase in the transmembrane proton gradient and a shift from linear to cyclic electron transport. This disruption significantly impairs the transport of photosynthetic products, particularly triose phosphates, essential for sucrose synthesis in the cytoplasm. Additionally, the reduced PQ pool influences the expression of key genes involved in photostability, highlighting the interplay between P homeostasis and photosynthetic regulation. By elucidating the mechanisms underlying OsPHT2;1's role in chloroplast function, our research underscores its significance in optimizing rice adaptation to low P environments, thereby enhancing crop resilience and productivity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70082"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency. Our findings show that the OsPHT2;1 mutation leads to a decrease in the plastoquinone (PQ) pool size. This change is associated with altered stomatal conductance and modifications in electron transport dynamics, including an increase in the transmembrane proton gradient and a shift from linear to cyclic electron transport. This disruption significantly impairs the transport of photosynthetic products, particularly triose phosphates, essential for sucrose synthesis in the cytoplasm. Additionally, the reduced PQ pool influences the expression of key genes involved in photostability, highlighting the interplay between P homeostasis and photosynthetic regulation. By elucidating the mechanisms underlying OsPHT2;1's role in chloroplast function, our research underscores its significance in optimizing rice adaptation to low P environments, thereby enhancing crop resilience and productivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species. The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1. Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1