Shanshan Lu, Xiaoming Xu, Yongzhen Wu, Jun Ye, Linyan Wu, Miaomiao Nie, Shubin Sun, Wen Jing, Hui-Kyong Cho, Hatem Rouached, Luqing Zheng
{"title":"Unravelling OsPHT2;1 function in Chloroplast Phosphorus Homeostasis and Photosynthetic Efficiency under Low Phosphorus Stress in Rice.","authors":"Shanshan Lu, Xiaoming Xu, Yongzhen Wu, Jun Ye, Linyan Wu, Miaomiao Nie, Shubin Sun, Wen Jing, Hui-Kyong Cho, Hatem Rouached, Luqing Zheng","doi":"10.1111/ppl.70082","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency. Our findings show that the OsPHT2;1 mutation leads to a decrease in the plastoquinone (PQ) pool size. This change is associated with altered stomatal conductance and modifications in electron transport dynamics, including an increase in the transmembrane proton gradient and a shift from linear to cyclic electron transport. This disruption significantly impairs the transport of photosynthetic products, particularly triose phosphates, essential for sucrose synthesis in the cytoplasm. Additionally, the reduced PQ pool influences the expression of key genes involved in photostability, highlighting the interplay between P homeostasis and photosynthetic regulation. By elucidating the mechanisms underlying OsPHT2;1's role in chloroplast function, our research underscores its significance in optimizing rice adaptation to low P environments, thereby enhancing crop resilience and productivity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70082"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency. Our findings show that the OsPHT2;1 mutation leads to a decrease in the plastoquinone (PQ) pool size. This change is associated with altered stomatal conductance and modifications in electron transport dynamics, including an increase in the transmembrane proton gradient and a shift from linear to cyclic electron transport. This disruption significantly impairs the transport of photosynthetic products, particularly triose phosphates, essential for sucrose synthesis in the cytoplasm. Additionally, the reduced PQ pool influences the expression of key genes involved in photostability, highlighting the interplay between P homeostasis and photosynthetic regulation. By elucidating the mechanisms underlying OsPHT2;1's role in chloroplast function, our research underscores its significance in optimizing rice adaptation to low P environments, thereby enhancing crop resilience and productivity.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.