Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2025-01-27 DOI:10.1007/s13246-025-01521-5
Divya Sasidharan, V Sowmya, E A Gopalakrishnan
{"title":"Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms.","authors":"Divya Sasidharan, V Sowmya, E A Gopalakrishnan","doi":"10.1007/s13246-025-01521-5","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification. For this an open EEG dataset consisting of 14 PD and 14 healthy (HC) subjects is utilized. Recurrence plots and cross-recurrence plots (CRPs) were constructed for each frequency band and brain region, extracting complexity measures such as determinism (DET) and entropy (ENT). The interpretability of the ML model decisions is investigated using explainability technique. The scattered distribution of points in RPs of male PD individuals reflects the complex and dynamic nature of abnormal brain function. Also, CRPs confirms the enhanced effect of Beta Gamma synchronization during PD in the Parietal region. Low DET and high ENT corresponds to the complex non-linear characteristics of EEG signals and brain neuronal circuits during PD condition in male subjects. The extracted recurrence features served as inputs to the ML models, which achieved high classification performance, across all the scenarios. This study demonstrates the potential of recurrence plot-based complexity analysis combined with machine learning for the gender-specific, region-specific, and band-specific assessment of EEG signals during resting state in Parkinson's disease.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01521-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification. For this an open EEG dataset consisting of 14 PD and 14 healthy (HC) subjects is utilized. Recurrence plots and cross-recurrence plots (CRPs) were constructed for each frequency band and brain region, extracting complexity measures such as determinism (DET) and entropy (ENT). The interpretability of the ML model decisions is investigated using explainability technique. The scattered distribution of points in RPs of male PD individuals reflects the complex and dynamic nature of abnormal brain function. Also, CRPs confirms the enhanced effect of Beta Gamma synchronization during PD in the Parietal region. Low DET and high ENT corresponds to the complex non-linear characteristics of EEG signals and brain neuronal circuits during PD condition in male subjects. The extracted recurrence features served as inputs to the ML models, which achieved high classification performance, across all the scenarios. This study demonstrates the potential of recurrence plot-based complexity analysis combined with machine learning for the gender-specific, region-specific, and band-specific assessment of EEG signals during resting state in Parkinson's disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
A new HCM heart sound classification method based on weighted bispectrum features. Estimation of dose to a bystander from F-18 FDG patients using Monte Carlo simulation in clinical exposure scenarios. Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors. Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms. Autoencoder based data clustering for identifying anomalous repetitive hand movements, and behavioral transition patterns in children.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1