A new HCM heart sound classification method based on weighted bispectrum features.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2025-01-30 DOI:10.1007/s13246-024-01506-w
Fang Yu, Huang Zhiyuan, Leng Hongxia, Dongbo Liu, Wang Weibo
{"title":"A new HCM heart sound classification method based on weighted bispectrum features.","authors":"Fang Yu, Huang Zhiyuan, Leng Hongxia, Dongbo Liu, Wang Weibo","doi":"10.1007/s13246-024-01506-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM), including obstructive HCM and non-obstructive HCM, can lead to sudden cardiac arrest in adolescents and athletes. Early diagnosis and treatment through auscultation of different types of HCM can prevent the occurrence of malignant events. However, it is challenging to distinguish the pathological information of HCM related to differential left ventricular outflow tract pressure gradients. To address this issue, a classification method based on weighted bispectrum features of heart sounds (HSs) is proposed for efficient and cost-effective HCM analysis. Preprocessing is first applied to remove background noise during HS acquisition. Then, the bispectrum contour map is calculated, and 56-dimensional features are extracted to represent the pathological information of HCM. Next, an adaptive threshold weighting mutual information method is proposed for feature selection and weighted fusion. Finally, the CNN-RF classifier model is built to automatically identify different types of HCM cases. A clinical dataset of normal and two types of HCM HSs is utilized for validation. The results show that the proposed method performs well, with a classification accuracy reaching 94.4%. It provides a reliable reference for HCM diagnosis in young patients in clinical settings.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01506-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertrophic cardiomyopathy (HCM), including obstructive HCM and non-obstructive HCM, can lead to sudden cardiac arrest in adolescents and athletes. Early diagnosis and treatment through auscultation of different types of HCM can prevent the occurrence of malignant events. However, it is challenging to distinguish the pathological information of HCM related to differential left ventricular outflow tract pressure gradients. To address this issue, a classification method based on weighted bispectrum features of heart sounds (HSs) is proposed for efficient and cost-effective HCM analysis. Preprocessing is first applied to remove background noise during HS acquisition. Then, the bispectrum contour map is calculated, and 56-dimensional features are extracted to represent the pathological information of HCM. Next, an adaptive threshold weighting mutual information method is proposed for feature selection and weighted fusion. Finally, the CNN-RF classifier model is built to automatically identify different types of HCM cases. A clinical dataset of normal and two types of HCM HSs is utilized for validation. The results show that the proposed method performs well, with a classification accuracy reaching 94.4%. It provides a reliable reference for HCM diagnosis in young patients in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
A new HCM heart sound classification method based on weighted bispectrum features. Estimation of dose to a bystander from F-18 FDG patients using Monte Carlo simulation in clinical exposure scenarios. Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors. Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms. Autoencoder based data clustering for identifying anomalous repetitive hand movements, and behavioral transition patterns in children.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1