Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2025-01-28 DOI:10.1007/s13246-025-01519-z
Liansheng Xu, Fei Shen, Fan Fan, Qiong Wu, Li Wang, Fengji Li, Yubo Fan, Haijun Niu
{"title":"Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors.","authors":"Liansheng Xu, Fei Shen, Fan Fan, Qiong Wu, Li Wang, Fengji Li, Yubo Fan, Haijun Niu","doi":"10.1007/s13246-025-01519-z","DOIUrl":null,"url":null,"abstract":"<p><p>Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P<sub>+</sub>, P<sub>-</sub>), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted. The dynamic response, propagation process, and attenuation law of the shock wave in the phantom under different impact intensities were analyzed. Results showed that flexible PVDF sensors could precisely acquire the characteristics of pulse waveform propagating within the phantom. At the same depth, as the driving pressure increases, P<sub>+</sub> and P<sub>-</sub> increase linearly, and [Formula: see text] remains constant. At the same driving pressure, P<sub>+</sub>, P<sub>-</sub>, and EFD decay exponentially with increasing propagation depth. At the same depth, the spectra of pulse waveforms are similar, and the increasing driving pressure does not cause significant changes in carrier frequency and modulation frequency. The research findings could provide a reference for developing ESWT devices, improving treatment strategies, and enhancing the safety of clinical applications.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01519-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P+, P-), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted. The dynamic response, propagation process, and attenuation law of the shock wave in the phantom under different impact intensities were analyzed. Results showed that flexible PVDF sensors could precisely acquire the characteristics of pulse waveform propagating within the phantom. At the same depth, as the driving pressure increases, P+ and P- increase linearly, and [Formula: see text] remains constant. At the same driving pressure, P+, P-, and EFD decay exponentially with increasing propagation depth. At the same depth, the spectra of pulse waveforms are similar, and the increasing driving pressure does not cause significant changes in carrier frequency and modulation frequency. The research findings could provide a reference for developing ESWT devices, improving treatment strategies, and enhancing the safety of clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
A new HCM heart sound classification method based on weighted bispectrum features. Estimation of dose to a bystander from F-18 FDG patients using Monte Carlo simulation in clinical exposure scenarios. Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors. Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms. Autoencoder based data clustering for identifying anomalous repetitive hand movements, and behavioral transition patterns in children.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1